Popup Workshop: Supporting and Observing Children’s Pop-up Design

Ph.D. Dissertation Proposal
Susan L. Hendrix
Department of Computer Science
University of Colorado at Boulder
28 April 2004
Overview

- Children and design
- Thesis question
- This proposal
- The domain and previous work
- The system
- Evaluation
- Contributions
- Schedule
Children make physical objects and could use software help in designing them. But what sort of help? How much help?

Children’s design

To examine design software for children, we need a domain—one that will be engrossing and fun for the child, and informative for the investigator.
Pop-ups are interesting

People enjoy them.

While everyone likes them, few people make them.

Can be very simple to make.

Children can and do make them.
Pop-ups in the classroom

Mathematical instruction:
iteration
series
limits
fractals

Also have been used in writing and art classes at the primary level.
Pop-ups as design domain

Can be simple or complex.

Modular construction--made of simpler elements.

Constrained by physical rules in order to open and close smoothly.

Paper is strong, common and cheap.

Construction can be difficult for children--due to complex constraints.

There is no current flexible tool for children.
Thesis question

Can a computer-aided design system using constraint satisfaction algorithms, which present pop-up books and cards as dynamic objects, be created that will enable children to design pop-ups and that will add to our knowledge of the process of design and the features of software which support children’s design?
Build a children’s pop-up design system with animation using constraints and recording ability.

Use this environment to study how children use it to design, how their designs change over time, and how their descriptions change.
Single-sheet

Pop-up elements

Applied
Element Constraints

- Single-slit
- Parallel double slit
- Non-parallel double slit

Single-sheet elements
Related work - software

Hypermami, Javagami, MachineShop

3D Card Maker
Other related work

Glassner: Single-sheet elements and v-folds
Formulas, not constraints
Drag and drop interface

Lee: Mathematical treatment of v-folds
Popup Workshop Prototype

single-sheet elements

add, delete, change, replicate

animation via simple constraint system
Major changes to prototype

- Add save, open, print, and export
- Better constraint system for animation
- Add tool for recording (with redo and undo)
- Add applied element type(s)
Evaluation

- Think-alouds for system evaluation
- Case studies
 - 6-8 students
 - 4th to 7th grade
 - Videotaped
 - Single student at a time
During case studies

- Before the experiments
 - Conversation and construction
- During the experiments
 - Work periods with tool and construction of pop-ups
- After the experiments
 - Conversation and construction
System evaluation

Design process: order and type of operations

Changes in designs and construction: novice vs. expert

Vocabulary: From observations
Contributions - design tools

- It will have created a tool which can be used by children to create pop-ups.

- It will have shown that constraint systems can be used in modelling pop-up action.

- It will have produced data to determine to what extent automated data collection and analysis can illuminate our understanding of computerized design tools.
Contributions - children’s design

- It will have produced data about the kinds of pop-up designs produced by children, and how they change over time.

- It will have produced data about the design processes in paper engineering used by children.

- It will have produced data about vocabulary and the change in vocabulary used by children in describing pop-ups.
<table>
<thead>
<tr>
<th>Schedule</th>
<th>Spring 2004</th>
<th>Summer 2004</th>
<th>Fall 2004</th>
<th>Spring 2005</th>
<th>Summer 2005</th>
<th>Fall 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Propose</td>
<td>Get HRC approval</td>
<td>User testing</td>
<td>User Testing</td>
<td>Finish analysis</td>
<td>Write dissertation</td>
</tr>
<tr>
<td></td>
<td>Coding and testing</td>
<td>Coding and testing</td>
<td>System modifications</td>
<td>Begin analysis</td>
<td>Write dissertation</td>
<td>Defend dissertation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Informal user testing</td>
<td></td>
<td>Begin writing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test protocols complete</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Find subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thanks to

Michael Eisenberg
Glenn Blauvelt
Tamara Sumner

Thanks to

Eric Scharff
Kirsten Butcher
Alena Sanusi
Leah Buechley

Supported by National Science Foundation Grant REC0125363