Wisdom is not the product of schooling but the lifelong attempt to acquire it.
- Albert Einstein

Meta-Design and Social Creativity

Gerhard Fischer
Center for LifeLong Learning & Design (L³D)
Department of Computer Science and Institute of Cognitive Science
University of Colorado, Boulder
http://l3d.cs.colorado.edu/~gerhard/

Presentation, IEMC 2007, Austin
Acknowledgements

- **organizers of IEMC 2007**: thanks for providing me with this opportunity

- **my collaborators at the Center for LifeLong Learning & Design (L3D)**: colleagues, former and current PhD students, Undergraduate Research Apprentices, visitors, …
Overview

- The Center for Lifelong Learning and Design (L³D)
- Basic Message
- Creativity and Design
- Elements of a Conceptual Framework
- Socio-Technical Environments (Examples)
- Implications
- Conclusions
The Center for Lifelong Learning and Design (L³D)

http://l3d.cs.colorado.edu/

- global objective: to do basic research on real problems

- examples of conceptual frameworks:
 - transcending the unaided, individual human mind → distributed intelligence, social creativity, learning on demand
 - making all voices heard → design, meta-design, social knowledge construction, Web 2.0 technologies

- examples of specific socio-technical environments
 - Envisionment and Discovery Collaboratory
 - Google-SketchUp + 3D Warehouse + Google Earth
The Basic Message

- the complexity and uniqueness of design problems transcend the unaided, individual human mind → they require meta-design and social creativity

- explore innovative conceptual frameworks as opportunities to bring humans and media together to achieve new levels of creativity supported by socio-technical environments
The Larger Context
Beyond the Unaided, Individual Human Mind
Why Now?
National Science Foundation

- **5 year strategic plan: terms and concepts**
 - collaboration 17
 - creativity 6
 - innovation 26
 - exploration 11
 - discovery 27
 - STEM 9

- **new programs:**
 - CreativeIT (2007)
Design, Collaborative Design and Meta-Design
Design and Collaborative Design

- **design versus natural science** (Herbert Simon “Sciences of the Artificial”)
 - **natural science**: how things are
 - **design**: how things ought to be

- the need for **collaborative design** because design problems are
 - **complex** → requiring **social creativity** in which stakeholders from different disciplines have to **collaborate**
 - **ill-defined** → requiring the **integration of problem framing and problem solving**
 - have no (single) answer → **argumentation support, consideration of trade-offs**
 - unique (“a universe of one”) → requiring **learning when no one knows the answer**
A Success Example of Design / Creativity in Architecture
Another Success Example of Design / Creativity in Architecture
To Engineer is Human

Meta-Design = Design for Designers

- meta-design explores:
 - the invention and design of a culture in which participants can express themselves and engage in personally meaningful activities

- meta-design requires
 - designers giving up some control at design time
 - active contributors (and not just passive consumers) at use time

- meta-design raises research problems of fundamental importance including
 - new design methodologies
 - a new understanding of collaboration, motivation, innovation and creativity
 - the design of innovative socio-technical environments

- provides a theoretical framework for Web 2.0 technologies
Design Time and Use Time

- **key**
 - system developer
 - user (representative)
 - end user

- **time**
 - design time
 - use time

- **world-as-imagined**
 - prediction
 - planning

- **world-as-experienced**
 - reality
 - situated action
Meta-Design: A Framework for Effective, Large Scale, Distributed, Collaborative Efforts

- **integration of consumer and producer roles** → Fischer, G. (2002) “Beyond 'Couch Potatoes': From Consumers to Designers and Active Contributors”
What Do Meta-Designers Do?

- they use their own creativity to create socio-technical environments in which other people can be creative

- they **underdesign**
 - by creating **contexts** and **content creation** tools rather than content
 - by creating **technical** and **social** conditions for broad participation in design activities
 - by supporting ‘**hackability**’ and ‘**remixability**’

- **examples for meta-design:** exploiting the power of mass collaboration with Web 2.0 Technologies
 - Wikis
 - **Google-SketchUp + 3D Warehouse + Google Earth**
 - Second Life
 - Open source
SketchUp — a 3D Modeling Environment for Content Creation
3D Warehouse: a Web 2.0 Environment

http://sketchup.google.com/3dwarehouse/

- features:
 - search, share, and store 3D models created in SketchUp
 - models include: buildings, houses, bridges, sculptures, cars, people, pets, ...
 - download the 3D models to be modified in SketchUp
 - if the model has a location on earth → download it and view it in Google Earth
 - share 3D models by uploading them from SketchUp

- challenges:
 - what will motivate people to participate?
 - participation requires to learn SketchUp → create learning environments for SketchUp
3D Warehouse

- **Tsim Sha Tsui Clock Tower** by Google
 - ★★★★★ (1 rating)
 - Tsim Sha Tsui Clock Tower,...
 - View in Google Earth

- **Figueroa at Wilshire** by Google
 - Albert C. Martin and...
 - View in Google Earth

- **1500 Walnut Street** by Google
 - This building located at 1500...
 - View in Google Earth

- **CPL Harold Washington Library Center** by Google
 - ★★★★★ (6 ratings)
 - This monumental building,...
 - View in Google Earth

- **Marriott Marquis** by Google
 - This Hotel in Atlanta rises...
 - View in Google Earth

- **Hearst Residence (Hearst Castle)** by Google
 - ★★★★☆ (2 ratings)
 - San Francisco architect Julia...
 - View in Google Earth

- **Milwaukee Art Museum** by Google
 - ★★★★★ (6 ratings)
 - The history of the Milwaukee...
 - View in Google Earth

- **CitySpire Center** by Google
 - ★★★★★ (2 ratings)
 - Designed by Murphy/Jahn, Inc....
 - View in Google Earth
Downtown Denver in 3D
Creativity and Social Creativity
Why is Creativity Needed?

—

Learning When No One Knows the Answer

- **design problems are unique** → learning from the past is not enough

- **sources for new knowledge:**
 - conceptual collisions
 - epistemological pluralism: diversity in how we think; e.g.: formal thinking versus bricolage
 - distributed intelligence
 - symmetry of ignorance
 - emergence
Creativity —The “Wrong” Image?
“The Thinker” by Auguste Rodin
Individual versus / and Social Creativity

“The strength of the wolf is in the pack, and the strength of the pack is in the wolf.” — Rudyard Kipling

- individual:
 - individuals participating in collaborative inquiry and creation need the individual reflective time depicted by Rodin's sculpture
 - without such reflection it is difficult to think about contributions to social creativity

- social
 - Rodin's sculpture "The Thinker" dominates our collective imagination as the purest form of human inquiry — the lone, stoic thinker
 - the reality is that scientific and artistic forms emerge from joint thinking, passionate conversations, and shared struggles
Social Creativity

- complex design problems are systemic problems; they seldom fall within the boundaries of one specific domain → they require the participation and contributions of several stakeholders with various backgrounds

- “An idea or product that deserves the label ‘creative’ arises from the synergy of many sources and not only from the mind of a single person” — Mihaly Csikszentmihályi

- “Invention is a social process: it rests on the accumulation of many minor improvements, not the heroic efforts of a few geniuses” — Karl Marx
Distances in Social Creativity: Limitations or Opportunities?

- **spatial dimension**: shared location → shared concerns; *success model*: open source communities

- **temporal dimension**: learning from the past; *success model*: reuse and redesign

- **conceptual dimension**: exploiting symmetry of ignorance, conceptual collisions, epistemological pluralism and breakdowns as sources for innovation; success models: Communities of Practice (CoPs) and Communities of Interest (Cols)

- **technological dimension**: a new understanding of *distributing intelligence* and the identification of *basic skills* in the 21st century
Communities of Practice (CoPs): Homogenous Design Communities

- **CoPs** = practitioners who work as a community in a certain domain

- **examples:** architects, urban planners, research groups, software developers, software users, kitchen designers, computer network designer,

- **learning:**
 - masters and apprentices
 - legitimate peripheral participation (LPP)

- **problems:** “group-think” → when people work together too closely in communities, they sometimes suffer illusions of righteousness and invincibility

- **systems:** domain-oriented design environments (e.g.: kitchen design, computer network design, voice dialogue design, …..)
Communities of Interest (Cols)
Heterogeneous Design Communities

- **Cols** = bring different CoPs together to solve a problem

- **membership** in Cols is defined by a shared interest in the framing and resolution of a design problem

- **diverse cultures**: people from academia and from industry, software designers and software users, students and researchers from different cultures

- **fundamental challenges**:
 - establish common ground by creating boundary objects
 - build a shared understanding of the task at hand
 - learn to communicate with others who have a different perspective
 - primary goal: not “moving toward a center” (such as LPP in CoP) but “integrating diversity and making all voices heard”
Creativity and Innovation — Hot Topics

A New NSF Research Program

CreativeIT
Developing the Synergies between Research in Creativity and Computer and Information Science and Engineering

- **program description:**
 - information technology is playing an increasing role in extending the capability of human creative thinking and problem solving
 - creative uses of information technology are leading to new areas of research and innovation

- **research areas:**
 - understanding creative cognition and computation
 - creativity to stimulate breakthroughs in science and engineering
 - educational approaches that encourage creativity
 - supporting creativity with information technology
A Wiki about the CreativeIT Program — Invitation to Participate

http://swiki.cs.colorado.edu:3232/CreativeIT
Examples

- domain-oriented design environments (DODEs) (including critiquing systems) — focused on individual creativity in design

- Envisionment and Discovery Collaboratory — focused on social creativity in design
A DODE for Kitchen Design: Construction

Gerhard Fischer 36 IEMC 2007
A DODE for Kitchen Design: Argumentation

Janus-Argumentation

Answer (Refrigerator, Sink, Stove)
The distance between sink, stove and refrigerator, the work triangle, should be less than 23 feet.

![Diagram](attachment:figure10.png)

Figure 10: the work triangle

Argument (Walking Distance)
The work triangle is an important concept in kitchen design. The work triangle denotes the center front distance between the three main appliances: sink, stove and refrigerator. This length should be less than 23 feet to avoid unnecessary walking and to ensure an efficient work flow in the kitchen.

Argument (Small Room)
In small kitchens where the work triangle is less than 16 feet.

Visited Nodes
- Answer (Refrigerator, Sink, Stove) Section

Commands
- Show Example
- Show Example Answer (Refrigerator, Sink, Stove)

Search For Topics
- Show Argumentation
- Show Context
- Show Counter Example
The Envisionment and Discovery Collaboratory (EDC)

- the EDC supports:
 - collaborative design (e.g. in: urban planning, emergency management)
 - **social creativity** → learning when no one knows the answer — allowing all stakeholders to act as informed participants and active contributors (→ a Web 2.0 environment)
 - **meta-design** → a version of SimCity in which content is generated by users

- the innovative technologies in the EDC:
 - table-top
 - computationally enriched physical objects
 - visualization reflection-in-action
The Envisionment and Discovery Collaboratory
Face-to-Face Collaboration around the EDC Action Space
Boulder City Council and University of Colorado Regents
Sketching Support in the EDC
Buildings Sketched into a Google-Earth Client
Land Use in the Action Space
Summary View of Land Use Generated in the Reflection Space

<table>
<thead>
<tr>
<th>Land Use Type</th>
<th># of Blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Space</td>
<td>62</td>
</tr>
<tr>
<td>Commercial</td>
<td>5</td>
</tr>
<tr>
<td>Light Industry</td>
<td>27</td>
</tr>
<tr>
<td>Single Family</td>
<td>107</td>
</tr>
<tr>
<td>Multi-Family</td>
<td>8</td>
</tr>
<tr>
<td>Agriculture</td>
<td>17</td>
</tr>
</tbody>
</table>
Emerging Insight: Illustrating Multiple Walking Distances
Integrating Individual and Social Creativity: Caretta
Challenges

- creativity and education
- transdisciplinary collaboration
- creativity and outsourcing
Panic-Driven Educational Reform in the USA

- panic #1: USSR first in space → emphasis of STEM (Science, Technology, Education, Mathematics) disciplines
 - this is an area where many other countries do extremely well

- panic #2: US lagging in test scores → high-stake testing
 - this is an area where many other countries do extremely well

- panic #3: outsourcing of knowledge work → education for creativity, imagination, and innovation, thinking outside of the box, unique solutions
 - question: which country does well in this area?
 - question: is #2 and #3 somewhat incompatible

- panic #4: complex problems transcending the unaided, individual human mind, symmetry of ignorance → reflective communities, distributed intelligence, meta-design, social creativity
Reflective Practitioners → Reflective Communities

- the key to address complex problems is
 - not in "Leonardos who are competent in all sciences" or in “educating the intellectual superhuman” who knows everything
 - but to achieve “collective comprehensiveness through overlapping patterns of unique narrowness” → Fish-Scale Model by Campbell
Large Conceptual Distance — Limited Common Ground
Software Professionals Acquiring Domain Knowledge
Domain Experts Acquiring Media Knowledge
From Reflective Practitioners to **Reflective Communities**
Why Should Computer Science be Interested in Creativity?

- **National Science Foundation**
 - Creativity Support Tools Workshop (June 2005)
 - new programs with the Computer Science Directorate:
 - **Science of Design Program**
 - new **Creativity Program**: The Synergy of Creativity with Research in Computer and Information Science and Engineering
 - **American Competitiveness** in the Future Globalized Economy

- **National Research Council**

- **Globalization and Offshoring of Software**
Software Design: Upstream and Downstream Activities

- **upstream**: world → model / specification
 - ill-defined problem
 - integration of problem framing and problem solving
 - collaboration and communication between different stakeholders
 - failure leads to *design disasters* (wrong problem is solved)

- **downstream**: model / specification → implementation / system
 - well-defined problem
 - dealing with difficult technical problems
 - creating reliable code
 - failure leads to *implementation disasters* (wrong solution to the right problem)
Current Computer Science Education and Outsourcing

<table>
<thead>
<tr>
<th></th>
<th>Upstream Activities</th>
<th>Downstream Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Themes</td>
<td>creative work, communication, collaboration, context, integration of problem framing and problem solving, fuzzy requirements, customer satisfaction</td>
<td>programming, programming languages, compilers, rule-based behavior (tax returns),….</td>
</tr>
<tr>
<td>Emphasis in current CS programs</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Future jobs (not being outsourced)</td>
<td></td>
<td>XXXXXXX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Conclusions

- **the basic message**
 - the complexity and uniqueness of design problems transcend the unaided, individual human mind → they require meta-design and social creativity

- **socio-technical environments in support of meta-design and social creativity:**
 - design → meta-design
 - unaided, individual human mind → media-augmented social creativity to make all voices heard and integrate diversity
 - communities of practice → communities of interest
 - reflective practitioners → reflective communities