. Wisdom is not the product of schooling
o Leﬂfﬂ"ﬂg but the lifelong attempt to acquire it.

"% & Design - Albert Einstein

Uni of Colorado at Boulder

Seeding, Evolutionary Growth, and Reseeding

Ernesto Arias & Gerhard Fischer
and
Andy Gorman, Rogerio de Paula & Eric Scharff

ATLAS TAM Course, Spring 2000

Arias / Fischer 1 Spring 2000, Information Society Course

Complex Systems: Why Do They Need to Evolve and How
Can Evolution Be Supported

» the basic message: computational systems of the future
- will be complex, embedded systems
- need to be open and not closed
- will evolve through their use

« examples:
- domain-oriented design environments (DODES)
* kitchen design: extensions for microwaves, critics checking appliances
against the wall (unless island kitchens), designs for disabled people
(blind, in wheelchairs)
* computer network design: new computers, new communication devices
- Envisionment and Discovery Collaboratory (EDC) (versus SimCity)
- operating systems (Linux) and high-functionality applications (MS-Word, Canvas,

- courses as seeds

- buildings (see Stewart Brand: “How Buildings Learn - What Happens after they’re
built”)

Arias / Fischer 2 Spring 2000, Information Society Course

The Past and The Future

Theme Past Future
focus of interest algorithm complex system

relevant theories physics, mathematics | biology

design building from scratch |reuse, redesign, adaptation,
methodology evolution

- claims/challenges:
- (many) software systems must evolve (they cannot be completely
designed prior to use)
- (many) software systems must evolve at the hands of the users

- (many) software systems must be designed for evolution

Arias / Fischer 3 Spring 2000, Information Society Course

Problems of Complex (Computer) System Design

problems in semantically rich domains ----> thin spread of application
knowledge

modeling a changing world ----> changing and conflicting requirements

turning a vague idea about an ill-defined problem into a specification ---->

“design disasters”, “up-stream activities”

symmetry of ignorance ----> communication and coordination problems

Arias / Fischer 4 Spring 2000, Information Society Course

Answers to Problems of System Design

problems in semantically rich domains = thin spread of application
knowledge — domain-orientation

modeling a (changing) world = changing and conflicting requirements —
evolution

turning a vague idea about an ill-defined problem into a specification -

“design disasters”, “up-stream activities” — integration of problem framing
and problem solving

symmetry of ignorance - communication and coordination problems —
representation for mutual understanding and mutual learning

Arias / Fischer 5 Spring 2000, Information Society Course

Theory and Practice of Design—A Quest for Evolution

Dawkins — “ The Blind Watchmaker”: big-step reductionism cannot work as
an explanation of mechanism; we can't explain a complex thing as originating
In a single step

Simon — “The Sciences of the Artificial”: complex systems evolve faster if
they can build on stable subsystems

Petroski — “ To Engineer Is Human”: the role of failure in successful design

Brooks — “ No Silver Bullet”: successful software gets changed, because it
offers the possibility to evolve

Polanyi — “ The Tacit Dimension”: knowledge is tacit - we know more than
we can say

Arias / Fischer 6 Spring 2000, Information Society Course

Karl Popper: Conjectures and Refutations

John Archibald Wheeler: “Our whole problem is to make the mistakes as fast
as possible.” (foreword to the book) — breakdowns as opportunities

 criticism of our conjectures is of decisive importance and all of our knowledge
grows only through the correcting of our mistake — critiquing systems

» there are all kinds of sources of our knowledge but none has authority —
symmetry of ignorance and mutual competency

« the advance of knowledge consists in the modification of earlier knowledge —
evolution

Arias / Fischer 7 Spring 2000, Information Society Course

The Economic Forces for Evolution in Software Systems

 the most critical software problem is the cost of maintenance and
evolution
- empirical studies of software costs: two-thirds of the costs of a large
system occur after the system is delivered

- claim: much of this cost is due to the fact that a considerable amount
of essential information (such as design rationale) is lost during
development and must be reconstructed by the designers who
maintain and evolve the system

* make enhancements and evolution “first class” activities in the lifetime
of an artifact
- accept the reality of change

- acknowledge increased up-front costs (cognitive and economic)

Arias / Fischer 8 Spring 2000, Information Society Course

Integrating Problem Framing and Problem Solving

« Simon:

“in oil painting every new spot of pigment laid on the canvas creates some kind of
pattern that provides a continuing source of new ideas to the painter. The painting
process is a process of cyclical interaction between the painter and canvas in which
current goals lead to new applications of paint, while the gradually changing pattern
suggests new goals.”

* Rittel:
one cannot understand a problem without having a concept of the solution in mind
one cannot gather information meaningfully unless one has understood the
problem but one cannot understand the problem without information about it

e concepts derived from these quotes:
- back-talk of artifacts/situations
reflection-in-action
incremental development
co-evolution between problem and solution
integration / co-evolution of upstream and downstream activities

empirical study: McGuckin

Arias / Fischer 9 Spring 2000, Information Society Course

AEGIS: Human Nature versus Human Error

» core of Aegis (worth 600 millions dollars): combat information center (CIC)

In the Strait of Hormuz incident

- search in a ordinary paperback airline flight guide
- scenario fulfillment

« congressional hearings (Navy, Psychologists,)

- Navy: “Aegis system's performance was excellent — it functioned as
designed”

Psychologist: “Aegis software was churning out more unrelated data
than the crew could readily digest”

Aegis was the wrong system in the wrong place: designed for the open ocean,

not for the twenty-five mile Strait of Hormuz - unarticulated background
knowledge

limits in testing (we test for what we are anticipating)

Arias / Fischer 10 Spring 2000, Information Society Course

Three Generations of Design Methods from the History
of Architectural Design

» 1st Generation (before 1970):
- directionality and causality
- separation of analysis from synthesis
- major drawbacks: (a) perceived by the designers as being unnatural, and
(b) does not correspond to actual design practice

« 2nd Generation in the early 70'es:
- participation — expertise in design is distributed among all participants
- argumentation — various positions on each issue
- major drawback: insisting on total participation neglects expertise
possessed by well-informed and skilled designers

« 3rd Generation (in the late 70'es):
- Inspired by Popper: the role of the designer is to make expert design
conjectures
- these conjectures must be open to refutation and rejection by the people
for whom they are made (---> end-user modifiability)

Arias / Fischer 11 Spring 2000, Information Society Course

Domain-Oriented Design Environments and Evolution

e support the construction and evolution of domains (program families)
« empirical fact: reuse is most successful within domains

e not just objects, but:
- case libraries (different granularity)

- critiquing (accumulated “wisdom” of a community of practice,
“virtual” stakeholders)

- specification component — partial characterization of a situation
model

- simulation — to understand the behavior

- argumentation — to explore the rationale behind the artifact

Arias / Fischer 12 Spring 2000, Information Society Course

Netscape: NetDE -- College of Engineering, University of Colorado

= Catalog

Catalog
z

|||:{>ﬁ

o B

Go | = | Wy | @G| ¥ | 2

BEack Forward] Home Feload Irnages Open Priry
Goto |f1"|e- -4 fuu-grn-bin Amenu.pl

what's New? | what's Coal? |

Handbook | Met Search | et Dif

e

Arias / Fischer

NetDE

Priorities to be used for devices in this area

lstpriodty: [Cost |
weight [10 |
2nd prinrity: [Expandability - |
weight: |8 |
3rd pricsity: [Reliability |
weight; |E{ |
(4) (oK) (Tancer

Group Memory

[] Meeting

[] Priorities
[] Machinery

[] Miscellaneoiis ™

[] All ema;

Hotes

I

E

Ll o
Ll

TSN~ ad| 0

=

I.n:;n.:al-@.m:ea

13

Spring 2000, Information Society Course

561 Indy Characteristics =[ape: NetDE -- College of Engineering, Univergi=——"—"—= |I'Ill:|g =1

Cperating System Sha [N | S 2| &

E Euilt-in Hetwark ard Harne REeload Irnages Open FPrint _F

Hetwrork Protocol @ TCHIE £ £ iSteinbeck ADesktopBE20Falder /EDCSEZ0Propozal f Soreentd
Yhat's Cool? I Handbook I Net Search I Net Directnrgl

i1 EtherTalk
i1 AppleTalk

S [7]

Ll
=

(2] wirtval Memory

=

NetDE Argumentat;

(4)

] Built-in Emadl
[<] Bruilt-in File Sharing (2)

[] Bruilt-in Wideo Capture

=

Herd Diive Capacity |1 GH 1 File Sharing

e native Apple networking protocols of LocalTalk or EtherTalk, file sharing on the
phiewved werv easily. Sharable wolumes on the netsrork w#ill appear on the Macintosh

desktop just like other mountable molumes. The networking icon can be opened by

double-clicking , and the files accessed the same way that files can be accessed on any other
monntable solume.

Macintosh File Sharing and the TCP!I

The use of the TCP/IPF Protocol makes file sharing

netwrock, but not a2 easily as when using Ethd _ o
. St he o] among the Macintoshes more difficult.

When vsing the TCRIPE netwrork protocol, thy .
environment, thind party softsrare must he 124

Would you like to see the argumentation?

() =

Message Added by John Doe on

Cancel
=
gl I T

Arias / Fischer 14 Spring 2000, Information Society Course

Examples of DODEs

» user interface design — Framer

 floor plan design for kitchens — Janus, KID

« graphics software — Explainer

« computer network design — Network, Pronet

« water management — Cadswes (with CU research center)

» Cobol programming and service provisioning — GRACE (with NYNEX)
« voice dialog design — VDDE (with USWest)

« lunar habitat design — HERMES (with NASA)

« graphic arts, information design, information visualization — Schemechart,
Chart ‘n’ Art

« multi-media design environment — eMMa (with SRA)

Arias / Fischer 15 Spring 2000, Information Society Course

Seeding, Evolutionary Growth, and Reseeding

seeding
- seed a domain-specific DODE using the domain-independent, multi-
faceted architecture
- provide representations for mutual learning and understanding between
the involved stakeholders
- make the seed useful and usable enough that it is used by domain
workers

evolutionary growth
- co-evolution between individual artifacts and the DODE
- learning on demand and end-user modifiability complement each other
- emerging human resources: local developers, power users, gardeners

reseeding
- formalize, generalize, structure
- asocial and technical challenge

success example of the SER model:
- development of operating systems
- open source movement
- courses as seeds

Arias / Fischer 16 Spring 2000, Information Society Course

Evolution at All Three Levels

evolution at the conceptual framework level
- end-user modifiable DODEs
- example: multifaceted, domain-independent architecture

evolution of the domain
- evolution was driven by new needs and expectations of users as well as
new technology
- example: computer network design

evolution of individual artifacts
- long-term, indirect collaboration
- design rationale
- example: the computer network at CU Boulder

co-evolution
- problem framing and problem solving (specification and implementation)
- individual artifact and generic, domain-oriented design environment

Arias / Fischer 17 Spring 2000, Information Society Course

The Seeding, Evolutionary Growth, and Reseeding (SER) Model

Artifact

Artifact A EI <>Q'<> %

{ i
Artifact B AD% % II
|

/Legend \

fbuild on &\Cient

/ lower level .
Dom an
Designer

modify ;
Environme nt
% lower level % Dev eloper Y,

e [
AR | I
|l I’ 8
Lo g—Bl———=~—" NED ®
- / \
f Evolutionary Growth \
— %% Seeding ReSeeding
/
Multifaceted {>
Architecture ﬁ =
v time

Arias / Fischer

18

Spring 2000, Information Society Course

The Evolution towards End-User Modifiable DODEs

General Programming Environments, e.g., Lisp, ...
- limited reuse

Object-Oriented Design, e.g., Smalltalk, Clos, C++,
- lack of domain-orientation

Domain-Oriented Construction Kits, e.g., Pinball, Music Construction Kits
- no feedback about quality of artifact

Constructive Design Environments, e.g., critics, explanations
- design is an argumentative process

Integrated Design Environments, e.g., combining construction and
argumentation
-> lack of shared context

Multifaceted Architecture

- limited evolution

Programmable End-User Modifiable Design Environments

Arias / Fischer 19 Spring 2000, Information Society Course

Understanding Pitfalls Associated with Evolutionary
Design

example:

- Oregon Experiment (Alexander et al., 1975)

- a housing experiment at the University of Oregon instantiating the concept of end
user-driven evolution

- an interesting case study that end user-driven evolution is no guarantee for success

the analysis of its unsustainability indicated two major reasons:
- there was a lack of continuity over time
- professional developers and users did not collaborate, so there was a lack of synergy

rationale for reseeding:

- making evolutionary development more predictable)

- developers and users engage in intense collaborations - with design rationale
captured, communication enhanced, and end user modifiability supported, developers
have a rich source of information to evolve the system in the way users really need it

Arias / Fischer 20 Spring 2000, Information Society Course

Evolution in Biology versus Evolution in the Human-Made
World — a Word of Caution

* the evolutionary metaphor must be approached with caution because
- there are vast differences between the world of the made and the world
of the born

- one is the result of purposeful human activity, the other the outcome of
a random natural process.

» does software develop according to the “ punctuated equilibrium”
theory?

- iIf yes, what causes the periods of increased change (subroutines,
object-oriented programming, the world-wide web)?

Arias / Fischer 21 Spring 2000, Information Society Course

Punctuated Equilibrium

J

K

D

E

i."

G H I J K

Arias / Fischer

22

Spring 2000, Information Society Course

Prototypes of Systems Supporting Evolution

Modifier (end-user modifiability component of Janus)
- mechanisms to add new objects and new behavior by the domain
designer

Gimme
- web-based group memory system
- supports communication between all stakeholders

Expectation Agents (with NYNEX, UC Irvine)
- support communication between developers and end-users
- oObserve actions of end-users and compare them to descriptions of the
intended use

Chart ‘n Art (self-disclosure)
- agentle transition from direct manipulation interfaces to end-user
programming

Visual Agent Talk (VAT)
- representations of conditions, actions and rules as graphical objects
- interface support (drag and drop) for end-user programming

Arias / Fischer 23 Spring 2000, Information Society Course

Conclusions

- complex (software) systems should be regarded as “living” entities which
are open and evolve

- the seeding, evolutionary growth, reseeding (SER) model is a feasible
model for the evolutionary design of complex software systems

- complex (software) systems need to be evolvable by their users, not just by
their developers

- these requirements create many interesting research challenges for
- end-user modifiability
- decentralized system development
- new conceptualization of the WWW
- culture changes in individuals (consumers - designers) and
organizations

Arias / Fischer 24 Spring 2000, Information Society Course

