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Wisdom is not the product of schooling
but the lifelong attempt to acquire it.

- Albert Einstein
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Complex Systems: Why Do They Need to Evolve and How
Can Evolution Be Supported

• the basic message:  computational systems of the future
- will be complex, embedded systems
- need to be open and not closed
- will evolve through their use

• examples:
- domain-oriented design environments (DODEs)

* kitchen design: extensions for microwaves, critics checking appliances
against the wall (unless island kitchens), designs for disabled people
(blind, in wheelchairs)

* computer network design: new computers, new communication devices
- Envisionment and Discovery Collaboratory (EDC) (versus SimCity)
- operating systems (Linux) and high-functionality applications (MS-Word, Canvas,

.............)
- courses as seeds
- buildings (see Stewart Brand: “How Buildings Learn - What Happens after they’re

built”)
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The Past and The Future

Theme Past Future

focus of interest algorithm  complex system

relevant theories physics, mathematics  biology

design
methodology

building from scratch reuse, redesign, adaptation,
evolution

• claims/challenges:
- (many) software systems must evolve (they cannot be completely

designed prior to use)

- (many) software systems must evolve at the hands of the users

- (many) software systems must be designed for evolution
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 Problems of Complex (Computer) System Design

•   problems in semantically rich domains ----> thin spread of application
knowledge

•   modeling a changing world ----> changing and conflicting requirements

•   turning a vague idea about an ill-defined problem into a specification ---->
“design disasters”, “up-stream activities”

•   symmetry of ignorance ----> communication and coordination problems
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Answers to Problems of System Design

•   problems in semantically rich domains à  thin spread of application
knowledge —  domain-orientation

•   modeling a (changing) world à  changing and conflicting requirements —
evolution

•   turning a vague idea about an ill-defined problem into a specification à
“design disasters”, “up-stream activities” —  integration of problem framing
and problem solving

•   symmetry of ignorance à  communication and coordination problems —
representation for mutual understanding and mutual learning
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Theory and Practice of Design— A Quest for Evolution

Dawkins —  “The Blind Watchmaker”: big-step reductionism cannot work as
an explanation of mechanism; we can't explain a complex thing as originating
in a single step

Simon —  “The Sciences of the Artificial”: complex systems evolve faster if
they can build on stable subsystems

Petroski —  “To Engineer Is Human”: the role of failure in successful design

Brooks —  “No Silver Bullet”: successful software gets changed, because it
offers the possibility to evolve

Polanyi —  “The Tacit Dimension”:  knowledge is tacit à  we know more than
we can say
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Karl Popper: Conjectures and Refutations

•   John Archibald Wheeler: “Our whole problem is to make the mistakes as fast
as possible.” (foreword to the book) —  breakdowns as opportunities

•   criticism of our conjectures is of decisive importance and all of our knowledge
grows only through the correcting of our mistake —  critiquing systems

•   there are all kinds of sources of our knowledge but none has authority —
symmetry of ignorance and mutual competency

•   the advance of knowledge consists in the modification of earlier knowledge —
evolution
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The Economic Forces for Evolution in Software Systems

• the most critical software problem is the cost of maintenance and
evolution

- empirical studies of software costs: two-thirds of the costs of a large
system occur after the system is delivered

- claim: much of this cost is due to the fact that a considerable amount
of essential information (such as design rationale) is lost during
development and must be reconstructed by the designers who
maintain and evolve the system

• make enhancements  and evolution “first class” activities in the lifetime
of an artifact

- accept the reality of change

- acknowledge increased up-front costs (cognitive and economic)
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 Integrating Problem Framing and Problem Solving

•   Simon:
“in oil painting every new spot of pigment laid on the canvas creates some kind of

pattern that provides a continuing source of new ideas to the painter. The painting
process is a process of cyclical interaction between the painter and canvas in which
current goals lead to new applications of paint, while the gradually changing pattern
suggests new goals.”

•   Rittel:
   one cannot understand a problem without having a concept of the solution in mind
   one cannot gather information meaningfully unless one has understood the

problem but one cannot understand the problem without information about it

•   concepts derived from these quotes:
-   back-talk of artifacts/situations
-   reflection-in-action
-   incremental development
-   co-evolution between problem and solution
- integration / co-evolution of upstream and downstream activities

• empirical study: McGuckin
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AEGIS: Human Nature versus Human Error

•   core of Aegis (worth 600 millions dollars): combat information center (CIC)

•   in the Strait of Hormuz incident
-   search in a ordinary paperback airline flight guide
-   scenario fulfillment

•   congressional hearings (Navy, Psychologists, ....)
-   Navy: “Aegis system's performance was excellent —  it functioned as

designed”
-   Psychologist: “Aegis software was churning out more unrelated data

than the crew could readily digest”

•   Aegis was the wrong system in the wrong place: designed for the open ocean,
not for the twenty-five mile Strait of Hormuz à  unarticulated background
knowledge

•   limits in testing (we test for what we are anticipating)
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Three Generations of Design Methods from the History
of Architectural Design

•   1st Generation (before 1970):
-  directionality and causality
-  separation of analysis from synthesis
-  major drawbacks: (a) perceived by the designers as being unnatural, and

(b) does not correspond to actual design practice

•   2nd Generation in the early 70'es:
-  participation —  expertise in design is distributed among all participants
-  argumentation —  various positions on each issue
-  major drawback: insisting on total participation neglects expertise

possessed by well-informed and skilled designers

•   3rd Generation (in the late 70'es):
-   inspired by Popper: the role of the designer is to make expert design

conjectures
-   these conjectures must be open to refutation and rejection by the people

for whom they are made (---> end-user modifiability)
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Domain-Oriented Design Environments and Evolution

• support the construction and evolution of domains (program families)

• empirical fact: reuse is most successful within domains

• not just objects, but:
- case libraries (different granularity)

- critiquing (accumulated “wisdom” of a community of practice,
“virtual” stakeholders)

- specification component —  partial characterization of a situation
model

- simulation —  to understand the behavior

- argumentation —  to explore the rationale behind the artifact
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 Examples of DODEs
•   user interface design —  Framer

•   floor plan design for kitchens —  Janus, KID

•   graphics software —  Explainer

•   computer network design —  Network, Pronet

•   water management —  Cadswes (with CU research center)

•   Cobol programming and service provisioning —  GRACE (with NYNEX)

•   voice dialog design —  VDDE (with USWest)

•   lunar habitat design —  HERMES (with NASA)

•   graphic arts, information design, information visualization —  Schemechart,
Chart ‘n’ Art

•   multi-media design environment —  eMMa (with SRA)
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Seeding, Evolutionary Growth, and Reseeding
•   seeding

-   seed a domain-specific DODE using the domain-independent, multi-
faceted architecture

-   provide representations for mutual learning and understanding between
the involved stakeholders

-   make the seed useful and usable enough that it is used by domain
workers

•   evolutionary growth
-   co-evolution between individual artifacts and the DODE
-   learning on demand and end-user modifiability complement each other
-   emerging human resources: local developers, power users, gardeners

•   reseeding
-   formalize, generalize, structure
-   a social and technical challenge

•   success example of the SER model:
-   development of operating systems
-   open source movement
-   courses as seeds
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Evolution at All Three Levels

•   evolution at the conceptual framework level
-   end-user modifiable DODEs
-   example: multifaceted, domain-independent architecture

•   evolution of the domain
-   evolution was driven by new needs and expectations of users as well as

new technology
-   example: computer network design

•   evolution of individual artifacts
-   long-term, indirect collaboration
-   design rationale
-   example: the computer network at CU Boulder

•   co-evolution
-   problem framing and problem solving (specification and implementation)
-   individual artifact and generic, domain-oriented design environment
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The Seeding, Evolutionary Growth, and Reseeding (SER) Model
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The Evolution towards End-User Modifiable DODEs

•   General  Programming Environments, e.g., Lisp, ...
à   limited reuse

•   Object-Oriented Design, e.g., Smalltalk, Clos, C++, .......
à   lack of domain-orientation

•   Domain-Oriented Construction Kits, e.g., Pinball, Music Construction Kits
à   no feedback about quality of artifact

•   Constructive Design Environments, e.g., critics, explanations
à   design is an argumentative process

•   Integrated Design Environments, e.g., combining construction and
argumentation

à   lack of shared context

•   Multifaceted Architecture
à  limited evolution

•   Programmable End-User Modifiable Design Environments
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Understanding Pitfalls Associated with Evolutionary
Design

• example:
- Oregon Experiment (Alexander et al., 1975)
- a housing experiment at the University of Oregon instantiating the concept of end

user-driven evolution
- an interesting case study that end user-driven evolution is no guarantee for success

• the analysis of its unsustainability indicated two major reasons:
- there was a lack of continuity over time
- professional developers and users did not collaborate, so there was a lack of synergy

• rationale for reseeding:
- making evolutionary development more predictable)
- developers and users engage in intense collaborations à  with design rationale

captured, communication enhanced, and end user modifiability supported, developers
have a rich source of information to evolve the system in the way users really need it
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Evolution in Biology versus Evolution in the Human-Made
World —  a Word of Caution

• the evolutionary metaphor must be approached with caution because
- there are vast differences between the world of the made and the world

of the born

- one is the result of purposeful human activity, the other the outcome of
a random natural process.

• does software develop according to the “punctuated equilibrium”
theory?

- if yes, what causes the periods of increased change (subroutines,
object-oriented programming, the world-wide web)?
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Punctuated Equilibrium
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 Prototypes of Systems Supporting Evolution

•    Modifier (end-user modifiability component of Janus)
-    mechanisms to add new objects and new behavior by the domain

designer

•    Gimme
-    web-based group memory system
-    supports communication between all stakeholders

•    Expectation Agents (with NYNEX, UC Irvine)
-    support communication between developers and end-users
-    observe actions of end-users and compare them to descriptions of the

intended use

•    Chart ‘n Art (self-disclosure)
-    a gentle transition from direct manipulation interfaces to end-user

programming

•    Visual Agent Talk (VAT)
-    representations of conditions, actions and rules as graphical objects
-    interface support (drag and drop) for end-user programming
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 Conclusions

• complex (software) systems should be regarded as “living” entities which
are open and evolve

 

 

• the seeding, evolutionary growth, reseeding (SER) model is a feasible
model for the evolutionary design of complex software systems

 

 

• complex (software) systems need to be evolvable by their users, not just by
their developers

 

 

• these requirements create many interesting research challenges for
- end-user modifiability
- decentralized system development
- new conceptualization of the WWW

- culture changes in individuals (consumers à  designers) and
organizations


