
Arias / Fischer 1 Spring 2000, Information Society Course

Wisdom is not the product of schooling
but the lifelong attempt to acquire it.

- Albert Einstein

Seeding, Evolutionary Growth, and Reseeding

Ernesto Arias & Gerhard Fischer
and

Andy Gorman, Rogerio de Paula & Eric Scharff

ATLAS TAM Course, Spring 2000

Arias / Fischer 2 Spring 2000, Information Society Course

Complex Systems: Why Do They Need to Evolve and How
Can Evolution Be Supported

• the basic message: computational systems of the future
- will be complex, embedded systems
- need to be open and not closed
- will evolve through their use

• examples:
- domain-oriented design environments (DODEs)

* kitchen design: extensions for microwaves, critics checking appliances
against the wall (unless island kitchens), designs for disabled people
(blind, in wheelchairs)

* computer network design: new computers, new communication devices
- Envisionment and Discovery Collaboratory (EDC) (versus SimCity)
- operating systems (Linux) and high-functionality applications (MS-Word, Canvas,

.............)
- courses as seeds
- buildings (see Stewart Brand: “How Buildings Learn - What Happens after they’re

built”)

Arias / Fischer 3 Spring 2000, Information Society Course

The Past and The Future

Theme Past Future

focus of interest algorithm complex system

relevant theories physics, mathematics biology

design
methodology

building from scratch reuse, redesign, adaptation,
evolution

• claims/challenges:
- (many) software systems must evolve (they cannot be completely

designed prior to use)

- (many) software systems must evolve at the hands of the users

- (many) software systems must be designed for evolution

Arias / Fischer 4 Spring 2000, Information Society Course

 Problems of Complex (Computer) System Design

• problems in semantically rich domains ----> thin spread of application
knowledge

• modeling a changing world ----> changing and conflicting requirements

• turning a vague idea about an ill-defined problem into a specification ---->
“design disasters”, “up-stream activities”

• symmetry of ignorance ----> communication and coordination problems

Arias / Fischer 5 Spring 2000, Information Society Course

Answers to Problems of System Design

• problems in semantically rich domains à thin spread of application
knowledge — domain-orientation

• modeling a (changing) world à changing and conflicting requirements —
evolution

• turning a vague idea about an ill-defined problem into a specification à
“design disasters”, “up-stream activities” — integration of problem framing
and problem solving

• symmetry of ignorance à communication and coordination problems —
representation for mutual understanding and mutual learning

Arias / Fischer 6 Spring 2000, Information Society Course

Theory and Practice of Design— A Quest for Evolution

Dawkins — “The Blind Watchmaker”: big-step reductionism cannot work as
an explanation of mechanism; we can't explain a complex thing as originating
in a single step

Simon — “The Sciences of the Artificial”: complex systems evolve faster if
they can build on stable subsystems

Petroski — “To Engineer Is Human”: the role of failure in successful design

Brooks — “No Silver Bullet”: successful software gets changed, because it
offers the possibility to evolve

Polanyi — “The Tacit Dimension”: knowledge is tacit à we know more than
we can say

Arias / Fischer 7 Spring 2000, Information Society Course

Karl Popper: Conjectures and Refutations

• John Archibald Wheeler: “Our whole problem is to make the mistakes as fast
as possible.” (foreword to the book) — breakdowns as opportunities

• criticism of our conjectures is of decisive importance and all of our knowledge
grows only through the correcting of our mistake — critiquing systems

• there are all kinds of sources of our knowledge but none has authority —
symmetry of ignorance and mutual competency

• the advance of knowledge consists in the modification of earlier knowledge —
evolution

Arias / Fischer 8 Spring 2000, Information Society Course

The Economic Forces for Evolution in Software Systems

• the most critical software problem is the cost of maintenance and
evolution

- empirical studies of software costs: two-thirds of the costs of a large
system occur after the system is delivered

- claim: much of this cost is due to the fact that a considerable amount
of essential information (such as design rationale) is lost during
development and must be reconstructed by the designers who
maintain and evolve the system

• make enhancements and evolution “first class” activities in the lifetime
of an artifact

- accept the reality of change

- acknowledge increased up-front costs (cognitive and economic)

Arias / Fischer 9 Spring 2000, Information Society Course

 Integrating Problem Framing and Problem Solving

• Simon:
“in oil painting every new spot of pigment laid on the canvas creates some kind of

pattern that provides a continuing source of new ideas to the painter. The painting
process is a process of cyclical interaction between the painter and canvas in which
current goals lead to new applications of paint, while the gradually changing pattern
suggests new goals.”

• Rittel:
 one cannot understand a problem without having a concept of the solution in mind
 one cannot gather information meaningfully unless one has understood the

problem but one cannot understand the problem without information about it

• concepts derived from these quotes:
- back-talk of artifacts/situations
- reflection-in-action
- incremental development
- co-evolution between problem and solution
- integration / co-evolution of upstream and downstream activities

• empirical study: McGuckin

Arias / Fischer 10 Spring 2000, Information Society Course

AEGIS: Human Nature versus Human Error

• core of Aegis (worth 600 millions dollars): combat information center (CIC)

• in the Strait of Hormuz incident
- search in a ordinary paperback airline flight guide
- scenario fulfillment

• congressional hearings (Navy, Psychologists,)
- Navy: “Aegis system's performance was excellent — it functioned as

designed”
- Psychologist: “Aegis software was churning out more unrelated data

than the crew could readily digest”

• Aegis was the wrong system in the wrong place: designed for the open ocean,
not for the twenty-five mile Strait of Hormuz à unarticulated background
knowledge

• limits in testing (we test for what we are anticipating)

Arias / Fischer 11 Spring 2000, Information Society Course

Three Generations of Design Methods from the History
of Architectural Design

• 1st Generation (before 1970):
- directionality and causality
- separation of analysis from synthesis
- major drawbacks: (a) perceived by the designers as being unnatural, and

(b) does not correspond to actual design practice

• 2nd Generation in the early 70'es:
- participation — expertise in design is distributed among all participants
- argumentation — various positions on each issue
- major drawback: insisting on total participation neglects expertise

possessed by well-informed and skilled designers

• 3rd Generation (in the late 70'es):
- inspired by Popper: the role of the designer is to make expert design

conjectures
- these conjectures must be open to refutation and rejection by the people

for whom they are made (---> end-user modifiability)

Arias / Fischer 12 Spring 2000, Information Society Course

Domain-Oriented Design Environments and Evolution

• support the construction and evolution of domains (program families)

• empirical fact: reuse is most successful within domains

• not just objects, but:
- case libraries (different granularity)

- critiquing (accumulated “wisdom” of a community of practice,
“virtual” stakeholders)

- specification component — partial characterization of a situation
model

- simulation — to understand the behavior

- argumentation — to explore the rationale behind the artifact

Arias / Fischer 13 Spring 2000, Information Society Course

(1)

(2)(3)

(4)

(5)

Arias / Fischer 14 Spring 2000, Information Society Course

(1)

(2)

(3)

(4)

Arias / Fischer 15 Spring 2000, Information Society Course

 Examples of DODEs
• user interface design — Framer

• floor plan design for kitchens — Janus, KID

• graphics software — Explainer

• computer network design — Network, Pronet

• water management — Cadswes (with CU research center)

• Cobol programming and service provisioning — GRACE (with NYNEX)

• voice dialog design — VDDE (with USWest)

• lunar habitat design — HERMES (with NASA)

• graphic arts, information design, information visualization — Schemechart,
Chart ‘n’ Art

• multi-media design environment — eMMa (with SRA)

Arias / Fischer 16 Spring 2000, Information Society Course

Seeding, Evolutionary Growth, and Reseeding
• seeding

- seed a domain-specific DODE using the domain-independent, multi-
faceted architecture

- provide representations for mutual learning and understanding between
the involved stakeholders

- make the seed useful and usable enough that it is used by domain
workers

• evolutionary growth
- co-evolution between individual artifacts and the DODE
- learning on demand and end-user modifiability complement each other
- emerging human resources: local developers, power users, gardeners

• reseeding
- formalize, generalize, structure
- a social and technical challenge

• success example of the SER model:
- development of operating systems
- open source movement
- courses as seeds

Arias / Fischer 17 Spring 2000, Information Society Course

Evolution at All Three Levels

• evolution at the conceptual framework level
- end-user modifiable DODEs
- example: multifaceted, domain-independent architecture

• evolution of the domain
- evolution was driven by new needs and expectations of users as well as

new technology
- example: computer network design

• evolution of individual artifacts
- long-term, indirect collaboration
- design rationale
- example: the computer network at CU Boulder

• co-evolution
- problem framing and problem solving (specification and implementation)
- individual artifact and generic, domain-oriented design environment

Arias / Fischer 18 Spring 2000, Information Society Course

The Seeding, Evolutionary Growth, and Reseeding (SER) Model

Do m a in
Design er

En v ironm e nt
Dev e loper

Clien t

L e g e n d

build on
lower level

modify
lower level

Evolutionary Growth

ReSeeding

Artifact A

Artifact B

Multifaceted
Architecture

DODE

Artifact

A r gu m entationCatalog

Specif icat ion

Argument ation
Il lust rator

Ca talog
Expl or e r

Catalog
Expl or er

A r gu m entationCatalog

Constr uctionSpecif icat ion

Argumentation
Il lust rator

Ca talog
Expl or e r

Catalog
Expl or er

Const ruction
Anal yzer

Specif icat ion
Matcher

Sp ecif ic at ion
Ma tch er

Seeding

le
ve

ls

time

Arias / Fischer 19 Spring 2000, Information Society Course

The Evolution towards End-User Modifiable DODEs

• General Programming Environments, e.g., Lisp, ...
à limited reuse

• Object-Oriented Design, e.g., Smalltalk, Clos, C++,
à lack of domain-orientation

• Domain-Oriented Construction Kits, e.g., Pinball, Music Construction Kits
à no feedback about quality of artifact

• Constructive Design Environments, e.g., critics, explanations
à design is an argumentative process

• Integrated Design Environments, e.g., combining construction and
argumentation

à lack of shared context

• Multifaceted Architecture
à limited evolution

• Programmable End-User Modifiable Design Environments

Arias / Fischer 20 Spring 2000, Information Society Course

Understanding Pitfalls Associated with Evolutionary
Design

• example:
- Oregon Experiment (Alexander et al., 1975)
- a housing experiment at the University of Oregon instantiating the concept of end

user-driven evolution
- an interesting case study that end user-driven evolution is no guarantee for success

• the analysis of its unsustainability indicated two major reasons:
- there was a lack of continuity over time
- professional developers and users did not collaborate, so there was a lack of synergy

• rationale for reseeding:
- making evolutionary development more predictable)
- developers and users engage in intense collaborations à with design rationale

captured, communication enhanced, and end user modifiability supported, developers
have a rich source of information to evolve the system in the way users really need it

Arias / Fischer 21 Spring 2000, Information Society Course

Evolution in Biology versus Evolution in the Human-Made
World — a Word of Caution

• the evolutionary metaphor must be approached with caution because
- there are vast differences between the world of the made and the world

of the born

- one is the result of purposeful human activity, the other the outcome of
a random natural process.

• does software develop according to the “punctuated equilibrium”
theory?

- if yes, what causes the periods of increased change (subroutines,
object-oriented programming, the world-wide web)?

Arias / Fischer 22 Spring 2000, Information Society Course

Punctuated Equilibrium

Arias / Fischer 23 Spring 2000, Information Society Course

 Prototypes of Systems Supporting Evolution

• Modifier (end-user modifiability component of Janus)
- mechanisms to add new objects and new behavior by the domain

designer

• Gimme
- web-based group memory system
- supports communication between all stakeholders

• Expectation Agents (with NYNEX, UC Irvine)
- support communication between developers and end-users
- observe actions of end-users and compare them to descriptions of the

intended use

• Chart ‘n Art (self-disclosure)
- a gentle transition from direct manipulation interfaces to end-user

programming

• Visual Agent Talk (VAT)
- representations of conditions, actions and rules as graphical objects
- interface support (drag and drop) for end-user programming

Arias / Fischer 24 Spring 2000, Information Society Course

 Conclusions

• complex (software) systems should be regarded as “living” entities which
are open and evolve

• the seeding, evolutionary growth, reseeding (SER) model is a feasible
model for the evolutionary design of complex software systems

• complex (software) systems need to be evolvable by their users, not just by
their developers

• these requirements create many interesting research challenges for
- end-user modifiability
- decentralized system development
- new conceptualization of the WWW

- culture changes in individuals (consumers à designers) and
organizations

