Nets and Optimal Search

Winston, Chapter 5

Michael Eisenberg and Gerhard Fischer
TA: Ann Eisenberg

Al Course, Fall 1997

Eisenberg/Fischer 1
Al Course, Fall97



Topics

global theme:
- to find not just one path to the goal (“main
street”)
- but: the optimal path (“exploring side
Streets”)

Procedures:

British Museum procedure
- find all possible paths
- use depth-first or breath-first search with
modification: search continues until every
solution is found

procedures aspiring to do their work efficiently:
- branch-and-bound
- discrete dynamic programming
- A*

Eisenberg/Fischer 2
Al Course, Fall97



Branch-and-Bound Search Expands the
Least-Cost Partial Path

- eliminate unnecessary work

- the branch-and-bound scheme
- keeps track of all partial path contending for

further consideration
- always extending the shortest path

- instead of terminating when a path is found, you
terminate when the shortest partial path is longer than the
shortest complete path

Eisenberg/Fischer 3
Al Course, Fall97



Branch-and-Bound Search

- To conduct a branch-and-bound search, form a one-
element queue consisting of a zero-length path that
contains only the root node.

- Until the first path in the queue terminates at the goal
node or the queue is empty,

- Remove the first path from the queue; create new
paths by extending the first path to all the
neighbors of the terminal node.

- Reject all new paths with loops.

* Add the remaining new paths, if any, to the
queue.

- Sort the entire queue by path length with
least-cost paths in front.

If the goal node is found, announce success; otherwise,
announce failure.

Eisenberg/Fischer 4
Al Course, Fall97



Adding Underestimates

- guesses about distances remaining

* in general:
e(total path length) = d (already traveled) + e (distance
remaining)
known
estimate

* underestimates:
u (total path length) = u (already traveled) + u (distance
remaining)
known
underestimate

* for highway map:

- straight-line distance is guaranteed to be an

underestimate

- the crux of the approach:
* underestimate as close as possible to the
true distance
* underestimate of close to zero is of little
value

Eisenberg/Fischer 5
Al Course, Fall97



Branch-And-Bound Search With A Lower-
Bound Estimate

- To conduct a branch-and-bound search with a lower-
bound estimate, form a one-element queue consisting of
a zero-length path that contains only the root node.

- Until the first path in the queue terminates at the goal
node or the queue is empty,

- Remove the first path from the queue; create new
paths by extending the first path to all the
neighbors of the terminal node.

- Reject all new paths with loops.
- Add the remaining new paths, if any, to the queue.

. Sort the entire queue by the sum of the path
length and a lower-bound estimate of the
cost remaining, with least-cost paths in front.

- If the goal node Is found, announce success; otherwise,
announce failure.

Eisenberg/Fischer 6
Al Course, Fall97



The Dynamic-Programming Principle

- objective: eliminate redundant partial paths

* the Dynamic-Programming Principle
The best way through a particular, intermediate place

s the
best way to it from the starting place,
+
followed by the best way from it to the goal.
There is no need to look at any other paths to or from
the intermediate place.

Eisenberg/Fischer 7
Al Course, Fall97



Branch-and-Bound Search and Dynamic-
Programming

- To conduct a branch-and-bound search with dynamic
programming, form a one-element queue consisting of a
zero-length path that contains only the root node.

- Until the first path in the queue terminates at the goal
node or the queue is empty,

- Remove the first path from the queue; create new
paths by extending the first path to all the
neighbors of the terminal node.

- Reject all new paths with loops.
- Add the remaining new paths, if any, to the queue.

* If two or more paths reach a common node,
delete all those paths except the one that
reaches the common node with the minimum
cost.

- Sort the entire queue by path length with least-
cost paths in front.

If the goal node is found, announce success; otherwise,
announce failure.

Eisenberg/Fischer 8
Al Course, Fall97



A* Search

- To conduct A* search, form a one-element queue
consisting of a zero-length path that contains only the
root node.

Until the first path in the queue terminates at the goal
node or the queue is empty,

Remove the first path from the queue; create new
paths by extending the first path to all the neighbors
of the terminal node.

Reject all new paths with loops.

* If two or more paths reach a common node,
delete all those paths except the one that
reaches the common node with the minimum
cost.

Sort the entire queue by the sum of the path
length and a lower-bound estimate of the cost
remaining, with least-cost paths in front.

If the goal node Is found, announce success; otherwise,
announce failure.

Eisenberg/Fischer 9
Al Course, Fall97



Several Search Procedures Find the
Optimal Path

- The British Museum procedure is good only when the
search tree is small.

- Branch-and-bound search is good when the tree is big
and bad paths turn distinctly bad quickly.

- Branch-and-bound search with a guess is good when
there is a good lower-bound estimate of the distance
remaining to the goal.

- Dynamic programming is good when many paths
converge on the same place.

- The A* procedure is good when both branch-and-
bound search with a guess and dynamic programming
are good.

Eisenberg/Fischer 10
Al Course, Fall97



Application: Obstacle Avoidance Problem
for Robots

* general idea (compare Number Scrabble and Tic-
Tac-Toe):
redescribe the problem in a simpler representation
solve the simpler problem
redescribe the solution in the original representation

* find a new presentation:
configuration-space obstacles
turns: object-obstacle problems ---> point-obstacle
problems
allows to use A* search techniques

Eisenberg/Fischer 11
Al Course, Fall97



Find “One” Paths <----> Find the “Shortest”
Path

- why do we care?

. In which situations do we care?

* examples:

- main streets versus side streets (riding a bicycle to
work, using a high functionality application)

- buy a can of (low-altitude) tennis balls
- find someone to repair a car

- search in the WWW (40 000 items returned) ---->
“optimal” solutions?

Eisenberg/Fischer 12
Al Course, Fall97



Summary

- The British Museum procedure is one of many search
procedures oriented toward finding the shortest path
between two points. The British Museum procedure
relies on working out all possible paths.

Branch-and-bound search usually saves a lot of time
relative to the British Museum procedure. It works by
extending the least-cost partial path until that path
reaches the goal.

- Adding underestimates to branch-and-bound search
improves efficiency. Deleting redundant partial paths, a
form of dynamic programming, also improves efficiency.
Adding underestimates and deleting redundant partial
paths converts branch-and-bound search into A* search.

- The configuration-space transformation turns object-
obstacle problems into point-obstacle problems. So
transformed, robot path-planning problems succumb to
A* search.

Eisenberg/Fischer 13
Al Course, Fall97



