
Eisenberg/Fischer 1

AI Course, Fall97

Nets and Optimal Search
—

Winston, Chapter 5

Michael Eisenberg and Gerhard Fischer
TA: Ann Eisenberg

AI Course, Fall 1997

Eisenberg/Fischer 2

AI Course, Fall97

Topics

global theme:
- to find not just one path to the goal (“main
street”)
- but: the optimal path (“exploring side
streets”)

Procedures:
• British Museum procedure

 - find all possible paths
 - use depth-first or breath-first search with

modification: search continues until every
solution is found

• procedures aspiring to do their work efficiently:

- branch-and-bound
- discrete dynamic programming
- A*

Eisenberg/Fischer 3

AI Course, Fall97

Branch-and-Bound Search Expands the
Least-Cost Partial Path

• eliminate unnecessary work

• the branch-and-bound scheme

- keeps track of all partial path contending for
further consideration
- always extending the shortest path

• instead of terminating when a path is found, you
terminate when the shortest partial path is longer than the
shortest complete path

Eisenberg/Fischer 4

AI Course, Fall97

Branch-and-Bound Search

• To conduct a branch-and-bound search, form a one-
element queue consisting of a zero-length path that
contains only the root node.

• Until the first path in the queue terminates at the goal

node or the queue is empty,

• Remove the first path from the queue; create new
paths by extending the first path to all the
neighbors of the terminal node.

• Reject all new paths with loops.

Add the remaining new paths, if any, to the
queue.

• Sort the entire queue by path length with
least-cost paths in front.

• If the goal node is found, announce success; otherwise,

announce failure.

Eisenberg/Fischer 5

AI Course, Fall97

Adding Underestimates

• guesses about distances remaining

in general:
e(total path length) = d (already traveled) + e (distance
remaining)

 known
estimate

underestimates:
u (total path length) = u (already traveled) + u (distance
remaining)

 known
underestimate

for highway map:
- straight-line distance is guaranteed to be an
underestimate
- the crux of the approach:

* underestimate as close as possible to the
true distance
* underestimate of close to zero is of little
value

Eisenberg/Fischer 6

AI Course, Fall97

Branch-And-Bound Search With A Lower-
Bound Estimate

• To conduct a branch-and-bound search with a lower-
bound estimate, form a one-element queue consisting of
a zero-length path that contains only the root node.

• Until the first path in the queue terminates at the goal

node or the queue is empty,
• Remove the first path from the queue; create new

paths by extending the first path to all the
neighbors of the terminal node.

• Reject all new paths with loops.

• Add the remaining new paths, if any, to the queue.

• Sort the entire queue by the sum of the path

length and a lower-bound estimate of the
cost remaining, with least-cost paths in front.

• If the goal node is found, announce success; otherwise,

announce failure.

Eisenberg/Fischer 7

AI Course, Fall97

The Dynamic-Programming Principle

• objective: eliminate redundant partial paths

the Dynamic-Programming Principle
The best way through a particular, intermediate place

is the

best way to it from the starting place,

+

followed by the best way from it to the goal.

There is no need to look at any other paths to or from

the intermediate place.

Eisenberg/Fischer 8

AI Course, Fall97

Branch-and-Bound Search and Dynamic-
Programming

• To conduct a branch-and-bound search with dynamic
programming, form a one-element queue consisting of a
zero-length path that contains only the root node.

• Until the first path in the queue terminates at the goal

node or the queue is empty,
• Remove the first path from the queue; create new

paths by extending the first path to all the
neighbors of the terminal node.

• Reject all new paths with loops.

• Add the remaining new paths, if any, to the queue.

If two or more paths reach a common node,
delete all those paths except the one that
reaches the common node with the minimum
cost.

• Sort the entire queue by path length with least-

cost paths in front.

• If the goal node is found, announce success; otherwise,

announce failure.

Eisenberg/Fischer 9

AI Course, Fall97

A* Search

• To conduct A* search, form a one-element queue
consisting of a zero-length path that contains only the
root node.

• Until the first path in the queue terminates at the goal

node or the queue is empty,
• Remove the first path from the queue; create new

paths by extending the first path to all the neighbors
of the terminal node.

• Reject all new paths with loops.

If two or more paths reach a common node,
delete all those paths except the one that
reaches the common node with the minimum
cost.

• Sort the entire queue by the sum of the path

length and a lower-bound estimate of the cost
remaining, with least-cost paths in front.

• If the goal node is found, announce success; otherwise,

announce failure.

Eisenberg/Fischer 10

AI Course, Fall97

Several Search Procedures Find the
Optimal Path

• The British Museum procedure is good only when the
search tree is small.

• Branch-and-bound search is good when the tree is big

and bad paths turn distinctly bad quickly.

• Branch-and-bound search with a guess is good when

there is a good lower-bound estimate of the distance
remaining to the goal.

• Dynamic programming is good when many paths

converge on the same place.

• The A* procedure is good when both branch-and-

bound search with a guess and dynamic programming
are good.

Eisenberg/Fischer 11

AI Course, Fall97

Application: Obstacle Avoidance Problem
for Robots

general idea (compare Number Scrabble and Tic-
Tac-Toe):

redescribe the problem in a simpler representation
solve the simpler problem
redescribe the solution in the original representation

find a new presentation:
configuration-space obstacles
turns: object-obstacle problems ---> point-obstacle
problems
allows to use A* search techniques

Eisenberg/Fischer 12

AI Course, Fall97

Find “One” Paths <----> Find the “Shortest”
Path

• why do we care?

• in which situations do we care?

examples:
• main streets versus side streets (riding a bicycle to

work, using a high functionality application)

• buy a can of (low-altitude) tennis balls

• find someone to repair a car

• search in the WWW (40 000 items returned) ---->

“optimal” solutions?

Eisenberg/Fischer 13

AI Course, Fall97

Summary

• The British Museum procedure is one of many search
procedures oriented toward finding the shortest path
between two points. The British Museum procedure
relies on working out all possible paths.

• Branch-and-bound search usually saves a lot of time

relative to the British Museum procedure. It works by
extending the least-cost partial path until that path
reaches the goal.

• Adding underestimates to branch-and-bound search

improves efficiency. Deleting redundant partial paths, a
form of dynamic programming, also improves efficiency.
Adding underestimates and deleting redundant partial
paths converts branch-and-bound search into A* search.

• The configuration-space transformation turns object-

obstacle problems into point-obstacle problems. So
transformed, robot path-planning problems succumb to
A* search.

