"Domain-Oriented Design Environments: Examples & Issues"

Gerry Stahl & Jonathan Ostwald

Center for LifeLong Learning and Design Dept. of Computer Science University of Colorado

A Brief History of AI

(my personal perspective)

- 1. AI software: a computer:: human mind: brain
- 2. AI models computational structure of mind
- 3. AI mimics human intelligence
- 4. AI heuristics do intelligent-looking tasks
- 5. AI can replace human decisions with representations of knowledge
- 6. Computers can support people with representations of knowledge
- 7. Computers can help people design by supporting communication & info retrieval (DODEs)
- 8. Computers should adapt generalized info to people's situated tasks

DODE systems and components

Lisp Critic critics

Framer construction kit

Phidias design rationale

Janus combine construction & rationale

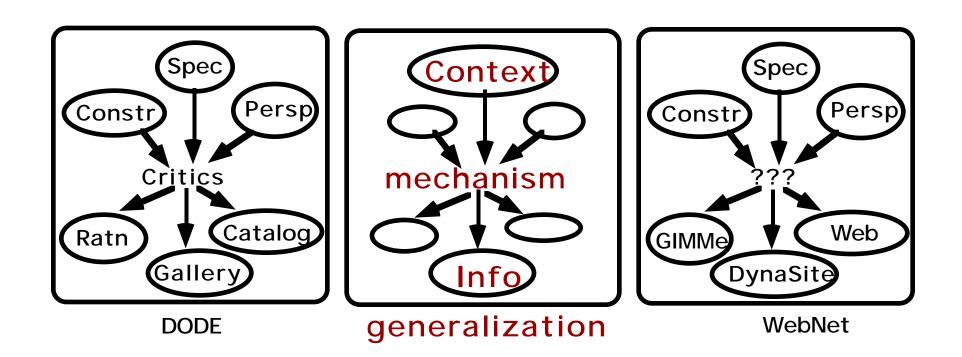
Modifier end-user modification of objects

KID specification

Hermes perspectives

Network communication medium

VDDE non-spatial metaphor


ProNet proactivity

WebNet information space

Seven Issues for the Next Generation of DODEs

- Issue 1. Retrieval Mechanisms for Relevant Info.
- **Issue 2. Representations of Context**
- **Issue 3. Retrieval of Domain Knowledge**
- Issue 4. Representations of System Knowledge
- Issue 5. Evolution of Knowledge
- **Issue 6. Management of Evolution**
- Issue 7. End-user Programmability and Extensibility

Issue 1. Retrieval Mechanisms for Relevant Info

critiquing assumes stable relations of context to info

Issue 2. Representations of Context

2-D constructions are not central to LAN management.

Network simulations are too complex.

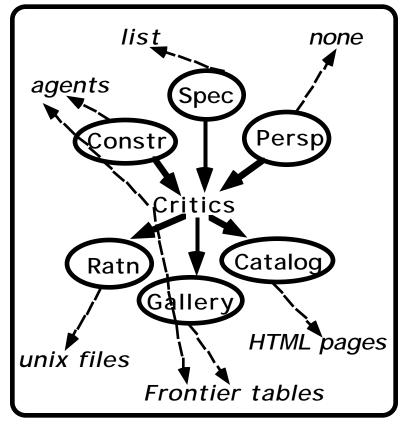
Represent problem specs in domain language?

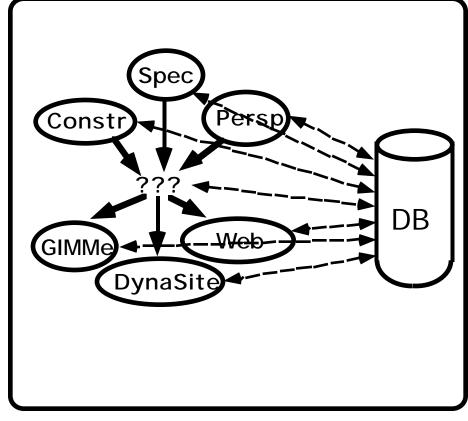
Model user or classify user interests.

Specify organizational context.

Issue 3. Retrieval of Domain Knowledge

Is LAN management a domain?


Why we picked it -- old view of domains.


Multiple-domain hardware/software problem solving.

Very contextual to local equipment config & history.

Group communication among individual actors.

Issue 4. Representations of System Knowledge

current WebNet

future WebNet

support universal linking, querying, perspectives.

Issue 5. Evolution of Knowledge

User needs change (more than maintainance)

Technology evolves

Organizational contexts transform

Knowledge is constructed in project activities

Knowledge is negotiated in communities of practice

Issue 6. Management of Evolution

Collect & capture info (seed & growth; low cost)

Update & structure (prune & organize)

Reseed with new functionality

Index for retrieval

Display for user context

Inter-link by relevance

Use Web (sparce, poor quality, changing, unindexed)

Issue 7. End-user Programmability and Extensibility

Extend gallery with Web repository (Martin)

Program construction/simulation agents (Agentsheets)

Define critic rules

Add retrieval queries (GIMMe, WebNet)

Interactive, evolving Web sites (Elmo, DynaSites)

References

- 1. Bourdieu (1972) Outline of a Theory of Practice.
- 2. Brown (1993) "Borderline Issues." HCI.
- 3. Fischer, et al. (1993) "Embedding Computational Critics in the Contexts of Design." InterCHI'93.
- 4. Fischer, et al. (1991) "The Role of Critiquing in Cooperative Problem Solving," ACM TIS.
- 5. Heidegger (1927) Being and Time.
- 6. Schoen (1983) The Reflective Practitioner.
- 7. Searle (1980) "Minds, Brains and Programs." Behav & Brain Sciences.
- 8. Stahl (1997) "Personalizing the Web," submitted to CHI'97. Available on the web at http://www.cs.colorado.edu/~gerry/HomePage/chi_97.html
- 9. Stahl (1993) "Supporting Situated Interpretation" Proc Cog Sci.
- 10. Suchman (1987) Plans and Situated Action.
- 11. Winograd, Flores (1986) Understanding Computers and Cognition.