
An Introduction to Scheme Programming Through SchemePaint

For the first 2-3 weeks of this course, we will focus on introducing techniques
of functional programming. The language that we will use is called Scheme;
this is a dialect of Lisp, the most popular language for artificial intelligence
programming in the U.S.

The way that Scheme programming will be introduced in this class is through
a graphics application named "SchemePaint." You can think of SchemePaint as
a sort of "souped-up paint program": it allows you to draw shapes on the screen
by hand (using the mouse), but also to combine those pictures with figures
produced by programs that you can write. Using Scheme to write graphics
programs is an especially good (and, we hope, enjoyable) way to introduce
many of the fundamental concepts involved in programming.

Over time we will focus progressively less on graphics and more on the
"classic" areas of Lisp programming—namely, artificial intelligence and
symbolic manipulation. By the time we move on to these non-graphics
projects, though, you will have been introduced to many of the skills involved
in writing sophisticated Lisp programs.

A Note About the Software

We have been given permission by Lightship Software to distribute copies of
SchemePaint to students in this course.

PLEASE DO NOT DISTRIBUTE OR COPY THIS SOFTWARE;
AND IF YOU USE IT ON A PUBLIC MACHINE, PLEASE
DELETE THIS SOFTWARE FROM THE MACHINE WHEN

YOU ARE DONE.

In this regard, we ask that you sign and hand in the agreement attached to this
handout.

You may find it easiest to use this software by finding a Macintosh—either at
home, or in a computer lab—upon which to run it. Over the next several weeks,
we will set up MacScheme stations at a couple of publicly available Macs, and if
you prefer, you can use the software at those stations. SchemePaint runs on
any color Macintosh with at least 16M of RAM.

1.1

1.1 Starting the SchemePaint system

1.1.1 Copying the SchemePaint system over to a Macintosh
Note: The description below assumes a slight (but nonzero) acquaintance with
the Macintosh interface. If you have any questions about how to follow these
instructions, you should talk to Mike.

In order to work with SchemePaint, you will have to copy the files on your
floppy disk to a Macintosh hard disk. Here's how to go about this:

a. Double-click the mouse button on the icon for the hard disk on the machine
you are using. This will open the directory for the hard disk.

b. Insert the disk labelled "SchemePaint Disk" into the Macintosh floppy disk
drive. Open the directory for the floppy disk (again by double-clicking).

1.2

c. Double-click on the file "ScmPaint.sea". (The suffix ".sea" stands for "self-
extracting archive.") You will see a dialog box asking you to create a new
folder named "ScmPaint folder" on the hard disk. Select the choice "Save" and a
new folder will be created on the hard disk. This new folder will contain two
files: one labelled "ScmPaint1.heap" and the other labelled "Toolsmith 4.2 beta".

d. If this is a home Macintosh that you will be able to use on a regular basis,
then you needn't erase the SchemePaint folder when you are through
working. On the other hand, if this is a public (e.g., library) Mac and is not one
of the designated MacScheme workstations, then you should be sure to delete
the folder once you are done. The way to do this is to drag the SchemePaint
folder (and only this folder) onto the trash-can icon, and then select "Empty
Trash" from the Special menu.

1.3

1.1.2 Starting SchemePaint

a. You can start the SchemePaint system either by double-clicking on the
CSSchemePaint.heap icon, or by single-clicking on that icon and dragging it
over the MacScheme+TS icon.

b. A large window labelled transcript will come up on your screen. This
window will include some startup information which you should read. The
system that you have is capable of loading two possible systems—SchemePaint,
and a related system named HyperGami. In this course we will only use
SchemePaint, so you can ignore that part of the start-up information that is
specific to HyperGami.

At the end of the start-up information, the system will pose a question about
screen size:

Small Screen? (Type Y or N, then press ENTER:)

If you are working with a 21-inch screen (lucky!) then type Y, otherwise N.
The system will then pose a second question:

SchemePaint or HyperGami? (Type S or H, then press ENTER:)

In this case, you should type S (in fact, you don't have the complete set of files
to run HyperGami, anyhow).

Once you press S, you will see a couple of new windows pop up on the screen
(and a couple of new menu titles as well, at the top of the screen). Resize the
transcript window, and move the SchemePaint and Paint windows so that
your screen looks like the figure below:

1.4

Now you are ready to start working with SchemePaint.

1.5

1.2 The Scheme Interpreter

In general, when working with SchemePaint you should begin by setting up
the screen so that it looks like the previous figure. For the moment, however,
we will forget about the SchemePaint and Paint windows, and focus on the
window labelled transcript at the top of the screen. This is the window in
which we interact with the Scheme interpreter.

You can think of the Scheme interpreter as an abstract machine that
communicates with us via the transcript window. The transcript presents us
with a "prompt" (in the case of SchemePaint, the prompt is ">>>"); we type in
expressions in response to the interpreter prompt (followed by the ENTER
key); and the interpreter replies by finding the value of those expressions.
This may sound rather obscure at the moment, but as you work with the
interpreter you will get a more textured idea of how it operates.

The interpreter
prints out a
prompt of >>>

We type in an expression
of some form (for
instance, we might
simply type in the
number 3) followed by
ENTER.

The interpreter prints out
the result of evaluating our
expression (according to the
rules of Scheme evaluation).

1.6

1.3 Evaluating Numeric Expressions

Numbers evaluate to themselves. (I know this sounds either mysterious or
obvious just now, but for the moment bear with me.) To evaluate a numeric
expression, simply type the number at the Scheme prompt and then type the
ENTER (not the RETURN) key.

>>> 3
3

>>> 4.5
4.5

>>> 1.2e3
1200.0

>>> -4e-3
-0.004

The next step, after looking at numbers, is to evaluate a few compound
expressions (for now, we can just think of these as expressions surrounded by
parentheses). Here are a few compound arithmetic expressions:

>>> (+ 4 5)
9

>>> (- 16.5 2.2)
14.3

>>> (* 4.2 5)
21.0

>>> (/ 8 3)
2.6666666666666665

Note that Scheme uses prefix notation: the arithmetic operator appears first,
followed by the numeric arguments to that operator.

1.7

1.4 A Brief Detour: Dealing with Errors

Suppose that instead of typing in a number, we accidentally happen to type in
a letter instead:

>>> g
Undefined global variable:
g

Entering debugger. Enter ? for help
debug:>

What happened? We will go into more detail about this later; but briefly, the
Scheme interpreter is telling us that it cannot evaluate the expression "g". A
slightly more technical way of putting this is that we have typed in a symbolic
expression (here, the symbol g); and the Scheme interpreter does not
recognize this particular symbol. In response the Scheme interpreter has
given us a prompt for an interactive debugger -- a system used for debugging
running programs.

Over time we will see more of the debugger, and learn a bit about how to use it.
For now, though, our main concern is in exiting the debugger and going back
to the Scheme interpreter. We do this by typing the letter q (for "quit") and
then ENTER:

debug:> q
[Performing a Scheme reset]

MacScheme Top Level
>>>

Now we are once more dealing with the Scheme interpreter.

1.8

1.5 Nested Expressions

As you might expect, we can use compound arithmetic expressions as parts of
still-larger expressions:

>>> (+ 3 (* 6 8))
51

>>> (* 4.2 (+ 21 2))
96.6

>>> (+ (* 2 3) (- 8 6))
8

>>> (* (+ 2.2 3) (- 5 (/ 8 4)))
15.6

It is worth pausing at this point to describe in a bit more detail how the
Scheme interpreter is dealing with expressions of this type. In essence
(though admittedly we're being a little hand-wavy about the details) the
interpreter first determines that we have typed in a compound expression
beginning with a primitive procedure — that is, an expression beginning with
a procedure that has been "built-in" to the interpreter. The four arithmetic
procedures +, -, *, and / are all primitive procedures.

The interpreter next goes on to evaluate each of the argument subexpressions;
the results of these evaluation steps are then passed as arguments to the
original primitive procedure.

Here's an example—suppose we type in the following expression:

>>> (+ 2 3)

The Scheme interpreter first determines that this is a compound expression
beginning with the primitive addition procedure. The interpreter then goes
on to evaluate each of the two argument subexpressions (here, the expressions
2 and 3). Each of these argument subexpressions is just a number which (as we
noted in Section 1.3 earlier) evaluates to itself; so the interpreter now uses the
numbers 2 and 3 as arguments to the addition procedure and returns as the
final result the number 5.

Now, suppose we type in the following expression:

>>> (- 9 (+ 2 3))

Again, the Scheme interpreter determines that this is a compound expression
beginning with the primitive subtraction procedure. The interpreter goes on
to evaluate each of the two argument subexpressions. The first of these is a
number (evaluating to 9); the second is itself a compound expression
evaluating to the number 5 (as we discovered a moment ago). The interpreter

1.9

now uses the numbers 9 and 5 as the arguments to the primitive subtraction
procedure, and the result of the overall evaluation process is thus the number
4.

1.6 Using the SchemePaint Interface

We will have much more to say about the Scheme interpreter and its
evaluation rules over the next several lectures; but for the time being we will
postpone any further discussion of these matters and instead explore some of
the basic functionality of the SchemePaint interface.

First, it is worth playing with a few of the menu choices provided in
SchemePaint. The Paint menu provides (among others) choices allowing us to
clear the SchemePaint window (the "Clear Windows" command) and to toggle
the size of the Paint window ("Toggle Palette Size"). The second is useful when
you wish to change the number of available default colors (the choice
switches back and forth between a larger and smaller number); the first is
useful when you wish to refresh the SchemePaint window before beginning
some new drawing project.

In the following sectionwe will begin to look at some turtle-graphics
expressions: the "turtle," as we will see, is a little programmable cursor that
draws lines on the screen. Before writing turtle-graphics expressions, though,
we need to use a few handy commands from the Turtle menu. The "Show or
Hide Turtle" command can be used to show (or, if shown, to hide) the turtle on
the screen (it appears as a little isosceles triangle pointed upward). The "Pen
Down" command is used to tell the turtle to draw lines when it moves
(conversely, the "Pen Up" command will tell the turtle to move without
drawing any lines on the screen). Finally, the "Center" command can be used
to move the turtle to the center of the SchemePaint window.

After selecting "Show or Hide Turtle" to show the turtle, the SchemePaint
window will look as in the figure below.

1.10

1.11

1.7 Turtle Expressions

1.7.1 Moving the turtle forward

We can now begin working with a few initial turtle-graphics expressions in
Scheme. If we type in the following expression to the Scheme interpreter:

(forward 40)

we will see the turtle move forward (in this case, due north) forty units on the
screen:

The forward procedure is a primitive procedure—in a sense, very similar to the
arithmetic procedures that we saw earlier: it takes a single argument (which
should be a number) and uses that argument to tell the turtle how many steps
to move in the forward direction. Note that the forward procedure can take a
floating point argument; it can take a negative number as argument; and (this
should be no surprise) it can take an argument whose value is produced by a
compound expression:

(forward 33.3)
(forward -25)
(forward (* 5 6))

1.7.2 Turning the turtle

If the turtle could only move in one direction, it wouldn't be too interesting.
The next step beyond moving the turtle forward is to change its direction. One
way to do this is to tell the turtle to turn to its right by a certain number of
degrees:

(right 90)

1.12

If we type this expression at the Scheme interpreter, the turtle turns to the
right by 90 degrees (i.e., it does a "right face" turn). If we were to follow our
previous

(forward 40)

expression with a

(right 90)

expression, then the screen would look as follows:

We can evaluate a series of Scheme turtle expression in sequence to produce
particular shapes. For instance, suppose we first clear the window, center the
turtle, and then evaluate the following five expressions:

(forward 20)
(right 90)
(forward 10)
(right -90)
(forward 10)

We will see the following path taken by the turtle (for the remainder of these
examples we only show the turtle path without the background grid or
surrounding SchemePaint window):

1.13

Or—to take another example—suppose we center the turtle (and clear the
window) and evaluate the following eight expressions:

(forward 25)
(right 90)
(forward 25)
(right 90)
(forward 25)
(right 90)
(forward 25)
(right 90)

The path produced by the turtle will in this case be a square:

1.7.3 Using REPEAT to perform sequences many times

One more addition to our repertoire will now be particularly useful. You may
have noticed in the previous example that we in effect repeated four times a
sequence of two turtle expressions: that is, we typed in the two expressions:

(forward 25)
(right 90)

four successive times. Rather than go to this trouble, however, we can in fact
use a Scheme form named "repeat" to evaluate a sequence of turtle expressions
over and over, for some specified number of times. Here is the equivalent
repeat formulation of our previous square:

1.14

(repeat 4 (forward 25) (right 90))

Typing in this expression at the Scheme interpreter would produce a square
exactly like the one that we drew earlier. In general, the repeat form is
followed by (first) a number—indicating the number of times that we wish to
repeat some sequence—and then the sequence of one or more expressions that
we wish to repeat.

From these humble beginnings, it isn't too hard to start experimenting with
other regular polygons. Shown below are three examples—a triangle,
pentagon, and hexagon—and the Scheme expressions that generate them:

(repeat 3 (forward 25) (right 120))

(repeat 5 (forward 25) (right 72))

(repeat 6 (forward 25) (right 60))

Having come this far, we can go one final step further—suppose we repeat
expressions as parts of still larger repeat expressions? In other words, we
might try repeating, six times, a hexagon-drawing expression followed by a
(right 60) expression:

(repeat 6 (repeat 6 (forward 25) (right 60)) (right 60))

The result is shown below:

1.15

