
Fischer / Palen, Spring 1999 1 Design, Learning and Collaboration

Wisdom is not the product of schooling
but the lifelong attempt to acquire it.

- Albert Einstein

Software Design

Gerhard Fischer and Leysia Palen
Spring Semester 1999

February 17, 1999

Fischer / Palen, Spring 1999 2 Design, Learning and Collaboration

Problems of Software/System Design

• problems in semantically rich domains ----> thin spread of application
knowledge

• modeling a changing world ----> changing and conflicting requirements

• turning a vague idea about an ill-defined problem into a specification ---->
“design disasters”, “up-stream activities”

• symmetry of ignorance ----> communication and coordination problems

• reality is not user-friendly ----> useful and usable

Fischer / Palen, Spring 1999 3 Design, Learning and Collaboration

Answers to Problems of System Design

• problems in semantically rich domains ----> thin spread of application knowledge
— domain-orientation

• modeling a (changing) world ----> changing and conflicting requirements —
evolution

• turning a vague idea about an ill-defined problem into a specification ---->
“design disasters”, “up-stream activities” — integration of problem framing
and problem solving

• symmetry of ignorance ----> communication and coordination problems —
representation for mutual understanding and mutual learning

• reality is not user-friendly ----> useful and usable — collaborative work
practices, power users

Fischer / Palen, Spring 1999 4 Design, Learning and Collaboration

Upstream <--------> Downstream

World Model System

Upstream Downstream

Design Engineering

design disaster implementation diaster

Fischer / Palen, Spring 1999 5 Design, Learning and Collaboration

Why Upstream — Understanding the Context

Intention of the Designer:

Feedback from the Environment:

Procedure Written by the Designer: define triangle
 repeat 3 [forward 100 right 60]

"Intent" Articulation and
 Communication (communicated to the system): closed figure

Fischer / Palen, Spring 1999 6 Design, Learning and Collaboration

Upstream <--------> Downstream

Upstream Downstream

type of problem ill-defined problems well-defined problems

criteria to judge
solutions

adequate, understandable, enjoyable correct, robust, reliable, meets functional
specifications

breakdowns design diasters (we solve the wrong
problem)

implementation diasters (wrong solution
to the “right” problem)

primary source of
knowledge

domain workers software designers

support environments domain-oriented design environments knowledge-based software assistants,
programming environments

interaction paradigm languages of doing:prototypes, scenarios,
mock-ups, conceptual models of users

(formal) specifications

externalization (semi-formal) objects-to-think-with;
understood by all stakeholders

computationally interpretable objects

focus embedding in larger context, user
experience

computational mechanisms

evolution participatory design, use situations debugging, verification, validation

Fischer / Palen, Spring 1999 7 Design, Learning and Collaboration

The 1960s: High-Level, General Purpose Programming
Languages

Assembly
Languages

Programming
Languages

Compiler
Developer

Computer
User

Fischer / Palen, Spring 1999 8 Design, Learning and Collaboration

Domain-Oriented Design Environments Supporting Human
Problem-Domain Communication

Problem
Domains

Design
Environments Assembly

Languages

Programming

Languages

Computer
User

Compiler
Developer

Environment
Developer

Domain
Designer

Fischer / Palen, Spring 1999 9 Design, Learning and Collaboration

Three Generations of Design Methods from the History
of Architectural Design

• 1st Generation (before 1970):
- directionality and causality
- separation of analysis from synthesis ---> waterfall model
- major drawback: (a) perceived by the designers as being unnatural, and (b)

does not correspond to actual design practice

• 2nd Generation in the early 70'es:
- participation — expertise in design is distributed among all participants
- argumentation — various positions on each issue
- major drawback: insisting on total participation neglects expertise possessed

by a well-informed and skilled designer

• 3rd Generation (in the late 70'es):
- inspired by Popper: the role of the designer is to make expert design

conjectures
- these conjectures must be open to refutation and rejection by the people for

whom they are made (---> end-user modifiability)

Fischer / Palen, Spring 1999 10 Design, Learning and Collaboration

The Waterfall Model

Problem

Specification

implementation

Requirements

design

analysis

New Systemupstream

downstream

Fischer / Palen, Spring 1999 11 Design, Learning and Collaboration

Software and Design — Some Claims

• although there is a huge diversity among design disciplines, we can find
common concerns and principles that are applicable to the design of any
object, whether it is a poster, a household appliance, a housing development, a
software environment

• software design is a user-oriented field, and as such will always have the
human openness of disciplines such as architecture and graphic design, rather
than the hard-edged formulaic certainty of engineering design (Winograd)

• system development is difficult not because of the complexity of technical
problems, but because of the social interaction when users and system
developers learn to create, develop and express their ideas and visions
(Greenbaum & Kyng)

• questions to be asked about software design?
- how does it differ from programming, software engineering, software

architecture, human factors and interface design?
- how is it related to other fields that call themselves design, such as

industrial design, graphic design, information design, urban design, and
even fashion design?

Fischer / Palen, Spring 1999 12 Design, Learning and Collaboration

Readings about Software Design

• Curtis, B., Krasner, H., & Iscoe, N. (1988) "A Field Study of the Software Design
Process for Large Systems," Communications of the ACM, 31(11), pp. 1268-1287.

• Ehn, P. (1988) Work-Oriented Design of Computer Artifacts, Almquist & Wiksell
International, Stockholm, Sweden (discussion of the three generations of design
methodologies)

• Greenbaum, J. & Kyng, M. (Eds.) (1991) Design at Work: Cooperative Design of
Computer Systems, Lawrence Erlbaum Associates, Inc., Hillsdale, NJ.

• Winograd, T. (1995) "From Programming Environments to Environments for Designing,"
Communications of the ACM, 38(6), pp. 65-74.

• Winograd, T. (Ed.) (1996) Bringing Design to Software, ACM Press and Addison-
Wesley, New York.

• Tognazzini, B. (1996) Tog on Software Design, Addison-Wesley Publishing Company,
Reading, Massachusetts (the author of the Starfire Video)

• Fischer, G., K. Nakakoji, & J. Ostwald (1999): “Domain-Oriented Design Environments
— A New Understanding of Design and Its Computational Support”, forthcoming

