


Wisdom is not the product of schooling but the lifelong attempt to acquire it. - Albert Einstein

Learner-Centered Design: Beyond "Gift-Wrapping"

Gerhard Fischer and Leysia Palen Spring Semester 1999

March 29, 1999

Computational Support for Learning

Taxonomy of Intelligent Support Systems

• Type of Relationship:

- tutor
- advisor
- critic
- assistant
- consultant
- agent

• Type of Activity:

- teach
- guide
- visualize
- explain
- constrain
- criticize
- argue

Learning on Demand *between* Tutoring Systems and Open-Ended Learning Environments

• tutoring systems:

- *strength*: teach basic concepts and skills of a problem domain
- weaknesses:
 - cannot closely match the concrete problem solving situations of users
 - * learner must relate training to real-world problem situations
- open learning environments:
 - strength: controlled by the learner
 - weaknesses:
 - provide limited support in helping learners detect mistakes or overcome breakdowns
 - * misconceptions may accumulate into chains
 - learners get trapped on suboptimal plateaus because they fail to discover the relevant knowledge
- learning environment for learning-by-doing / learning on demand --->
 challenge: to combine the problem-solving experience and motivation of
 discovery learning with the effective guidance of tutorial interactions

How the West Was Won

An Environment to Support "Guided Discovery Learning"

Burton, R. R. & Brown, J. S. (1982) "An Investigation of Computer Coaching for Informal Learning Activities." In D. H. Sleeman & J. S. Brown (Eds.), Intelligent Tutoring Systems, Academic Press, London - New York, pp. 79-98.

- **a game** (designed for Plato Project) to give students drill and practice in arithmetic
- a coaching system issues explored:
 - turn mistakes into constructive episodes (the "Skiing Paper")
 - when to interrupt
 - what to say once after an interruption
 - diagnostic modeling based on a differential model
 - coaching by issues and example

Coaching Principles Based on Pedagogical Strategies

- **Principle 1:** Before giving advice, be sure the Issue used is one in which the student is weak.
- **Principle 2:** When illustrating an Issue, only us an Example (an alternative move) in which the result or outcome of that move is dramatically superior to the move made by the student.
- **Principle 3:** After giving the student advice, permit him to incorporate the Issue immediately by allowing him to repeat his turn.
- **Principle 4:** If a student is about to lose interrupt and tutor him only with moves that will keep him from losing.
- **Principle 5:** Do not tutor on two consecutive moves, no matter what.
- **Principle 6:** Do not tutor before the student has a chance to discover the game for himself.

Coaching Principles — Continued

- **Principle 7:** Do not provide only criticism when the Tutor breaks in! If the student makes an exceptional move, identify why it is good and congratulate him.
- **Principle 8:** After giving advice to the student, offer him a chance to retake his turn, but do not force him to.
- **Principle 9:** Always have the Computer Expert play an optimal game.
- Principle 10: If the student asks for help, provide several levels of hints.
- Principle 11: If the student is losing consistently, adjust the level of play.
- **Principle 12:** If the student makes a potentially careless error, be forgiving. But provide explicit commentary in case it was not just careless.

Tutoring versus Critiquing

• Tutoring:

- this is what I think you should do
- problem of coverage is important
- user has little control -- learning paths are determined by the tutor
- a sequence of increasing complex microworlds can be constructed a priori

• Critiquing:

- this is what I think of what you have done
- users must be competent in the subject domain being critiqued
- learning on demand / contextualized tutoring
- critic system needs to infer to which microworld the user belongs

Critiquing Strategies

- control the presentation component of a critic
 - interrupt user's work; separate window; flag
 - disable critics (in case where one disagrees)
- what aspects should be critiqued
 - educational critiques
 - performance critics
- negative versus positive critics
- how and when to intervene ---> intrusiveness
 - active critics: immediately, after one action, after a semantic unit
 - passive critics: critiquing is initiated by the users
- ground critiquing strategies in a user model (in addition to a task model)

Motivation and Associated Learning Strategies

- critiquing lets learners see for themselves the usefulness of new knowledge for actual problem situations; users are informed
 - when they are getting into trouble
 - when they are missing important information
 - when they come up with suboptimal solutions
- most of our critic rules state what one may not do; this makes for greater freedom of choice than if the rules were prescriptive
 - "You must not do X!" leaves open a whole range of possibilities in terms of what one may in fact do
 - "You must do X!" reduces the range of possibilities to the scope of X itself
- *unasked-for help* breeds incompetence and is often seen as an intrusion

Goal Acquisition and Product Analysis

• domain knowledge

- generic e.g., Lisp programs, kitchens, networks, voice dialog systems
- what is a domain (residential versus commercial kitchens, kitchens for disabled persons)

• goal knowledge

- specific about an individual product
- inferred from partial specifications and partial constructions

• differential critiquing:

- system generates its own solution
- compares it with the user's solution and points out the difference

• analytical critiquing:

system checks the product with respect to predefined features and effects