
Fischer / Palen, Spring 1999 1 Design, Learning and Collaboration

Wisdom is not the product of schooling
but the lifelong attempt to acquire it.

- Albert Einstein

Domain-Oriented Design Environments and Critiquing

Gerhard Fischer and Leysia Palen
Spring Semester 1999

February 24, 1999

Fischer / Palen, Spring 1999 2 Design, Learning and Collaboration

Domain-Oriented Design Environments

• goals:
- bring task to the forefront
- analysis of work products
- goal sharing (for agents, critics, task-based indexing)
- information delivery
- learning on demand
- external simplicity through internal complexity

• theory:
- collaborative problem solving
- distributed cognition
- integration of problem framing and problem solving
- reflection-in-action
- design-in-use
- situational awareness
- computational environments as “living” entities

• users:
- skilled domain workers
- stakeholders with different interest and different background

knowledge

Fischer / Palen, Spring 1999 3 Design, Learning and Collaboration

End-User Modifiable, Domain-Oriented Design Environments

• General Programming Environments, e.g., Lisp, ... -----> limited reuse

• Object-Oriented Design, e.g., Smalltalk, Clos, C++, Java
-----> lack of domain-orientation

• Domain-Oriented Construction Kits, e.g., Pinball, Music Construction Kits
 -----> no feedback about quality of artifact

• Constructive Design Environments, e.g., critics, explanations
----> design is an argumentative process

• Integrated Design Environments, e.g., combining construction and
argumentation ----> lack of shared context

• Multifaceted Architecture ----> limited evolution

• End-User Modifiable Design Environments

Fischer / Palen, Spring 1999 4 Design, Learning and Collaboration

The Multi-Faceted Domain-Independent Architecture for DODEs

ArgumentationCatalog

ConstructionSpecification

Argumentation
Illustrator

Catalog
Explorer

Catalog
Explorer

Construction
Analyzer

Specification
Matcher

Specification
Matcher

Fischer / Palen, Spring 1999 5 Design, Learning and Collaboration

Examples of Domain-Oriented Design Environments

• user interface design — Framer

• floor plan design for kitchens — Janus, KID

• computer network design — Network, Pronet, Webnet

• Cobol programming and service provisioning — GRACE (with NYNEX)

• voice dialog design — VDDE (with USWest)

• lunar habitat design — HERMES (with NASA)

• graphic arts, information design, information visualization — Schemechart,
Chart ‘n’ Art

• multi-media design environment — eMMa (with SRA)

Fischer / Palen, Spring 1999 6 Design, Learning and Collaboration

Shared Context in Domain-Oriented Design Environments

• increase on the system's side
- domain-orientation
- construction
- specification
- embedded communication and history
- incremental formalization

• increase on the user's side
- “back-talk” of the situation (critics, simulation)
- specification support through the argumentation component
- making argumentation serve design (providing arguments behind

critiquing messages)
- access and delivery of cases (catalog examples) relevant to the task at

hand

Fischer / Palen, Spring 1999 7 Design, Learning and Collaboration

Why Critiquing?

• support reflection-in-action
- the designer shapes the situation in accordance with his initial

appreciation of it construction

- the situation “talks back” with the help of the critics

- in answers to the situations “back-talk”, the designer reflects-in-action
on the construction of the problem argumentation

• humans settle on plateaus of suboptimal behavior

• “virtual” stakeholders

Fischer / Palen, Spring 1999 8 Design, Learning and Collaboration

Rationale for Critiquing Systems

• claim: as people take on more jobs that are more complex or more
comprehensive, they need help accomplishing unfamiliar tasks that are part of
an expanded job — e.g.: multi-media is a good example (charts, color,)

• Kosslyn (in “Elements of Graph Design”, p 2):
- one reason for the abundance of bad graphs is the proliferation of low-

cost microcomputers and “business graphics” packages, which often
seduce the user into producing flashy, but muddled display

- the ease of creating charts and graphs is a major selling point for personal
computers, one rarely hears anything about the utility of the displays the
machines produce

• Travis (in “Effective Color Displays”):
- the standard IBM PC can now display 256 K colors and a Sun workstation

can display 16.8 million — hardware is no longer a limiting factor to use
color

- but: when color is used inappropriately it can be very counter productive
and few software designers have much experience with the use of color

Fischer / Palen, Spring 1999 9 Design, Learning and Collaboration

Critiquing

• critiquing = presenting a reasoned opinion about a user’s product or action

• critics make the constructed artifact “talk back” to the users (beyond the
“back-talk” provided by the materials)

• critics should be embedded into domain-oriented design environments

• critiquing process:
- goal acquisition
- product analysis
- critiquing strategies (when, how, and where)

• classes of critics:
- educational and/versus performance: primary objective is learning

and/versus better product
- negative and/versus positive

Fischer / Palen, Spring 1999 10 Design, Learning and Collaboration

What is Critiquing?

• exploiting the true power of computational media
- paper: passive — e.g.: style guides, design rationale systems

(see Web Style manual: http://info.med.yale.edu/caim/StyleManual_Top.HTML)
- computational media: active — critiquing, constraints, simulation,

making argumentation serve design, contextualizing information to the
task at hand, embedded critiquing

• role distributions
- in our approach most of the time: human designs and computer

critiques
- proactivity (e.g., the Pronet system: the users designs the high-level

architecture and the system fills in the details)
- examples of computer designs and human critiques: Unix directory

trees (the computer “knows” or can compute the information structure)

• increase the back-talk of a situation
- how is failure or inadequacy of the form perceived in a design?
- Rittel: “Buildings to not speak for themselves”
- critics volunteer information

Fischer / Palen, Spring 1999 11 Design, Learning and Collaboration

Examples

• spelling, grammar, color

• Lisp-Critic
- all Lisp program could be critiqued
- no knowledge about the problem to be solved (the macro example;

compare to technical editor)

• Voice Dialog Design:
- critiquing from multiple perspective
- end-user control over intrusiveness

• critiquing at
- the tool level (Lisp-Critic, spelling checker)
- critiquing at the domain level (kitchen, VDDE, lunar habitat design)

• embedded critiquing
- specific critics (left-handed, very short person)
- interpretive critics (resale versus personal)

Fischer / Palen, Spring 1999 12 Design, Learning and Collaboration

Embedded Critics

critics

construction

specification

design rationale catalog

perspectives

issue:
answer:

argument:
argument:

answer:
argument

resale
electrical plumbing
American

personal

Is the cook right-
or left-handed?

Japanese

Fischer / Palen, Spring 1999 13 Design, Learning and Collaboration

Assessment Questions for Critiquing Systems

• differences in performance if the system is used with and without critics,
catalog, and simulation component?

• integrate constraints (e.g., for building codes)

• trade-offs between running the system in a mode
- to prevent problems to occur (constraints)
- to let designers get in trouble

• intervention strategies (displaying enough information versus disrupting the
work process)?

• does “making information relevant to the task at hand” prevent “serendipity”?

• when are designers willing to suspend the construction process to access
relevant information?

• when will designers/users challenge or extend the knowledge represented in
the system? ---> end-user modifiability

Fischer / Palen, Spring 1999 14 Design, Learning and Collaboration

Lessons Learned From Our System-Building Efforts

• DODEs support “human problem domain communication”

• DODEs are instrumental versions of systems that are simultaneously user-
directed and computationally supportive

• critiquing
- breakdown as opportunities
- supports contextualized learning on demand
- makes argumentation serve design

• seeds need to be functional enough that they are used by skilled domain
designers in their work

• sociological structure of communities of practice with power users and local
developers

Fischer / Palen, Spring 1999 15 Design, Learning and Collaboration

Assessment of DODEs

• current limitation of DODEs:
– limited success models — specifically lack of experience with evolutionary

growth in naturalistic settings
– tool mastery burden

• research issue for DODEs
– design rationale
– case-based reasoning
– integrated artifact memories
– multi-user DODEs
– evolutionary growth through use
– new contracts between stakeholders

• challenges
– the question is how — not why?
– how large or small, general or specific should a domain be?
– cost-effectiveness: powerful substrates are needed

Fischer / Palen, Spring 1999 16 Design, Learning and Collaboration

A Few References about DODEs and Critiquing

• G Fischer, K Nakakoji, J Ostwald: “Domain-Oriented Design Environments — A New
Understanding of Design and Its Computational Support”, forthcoming

• G. Fischer, (1994) "Domain-Oriented Design Environments," Automated Software
Engineering, 1(2), pp. 177-203. (including commentaries and reply to commentaries)

• J. Robbins: “Design Critiquing Systems”, at:
http://www.ics.uci.edu/~jrobbins/papers/CritiquingSurvey.pdf

• M Rettig, “Cooperative Software,” Practical Programmer Column, CACM, April 1993, pp.
23-28.

• G Fischer, K Nakakoji, J Ostwald, G Stahl, T Sumner (1993): "Embedding Critics in
Design Environments," The Knowledge Engineering Review Journal, 8(4), pp. 285-307.

• K Nakakoji, “Increasing Shared Understanding: the Role of a Specification Component,”
Ph.D. Dissertation, University of Colorado at Boulder, May 1993.

• G Stahl, “Interpretation in Design: The Problem of Tacit and Explicit Understanding in
Cooperative Design,” Ph.D. Dissertation, CU-Boulder, August 1993.

