
4.2 Turtle Graphics

4.2a A Summary of Turtle Graphics Primitives

One of the graphics packages built into HyperGami allows you to
decorate nets by using turtle graphics primitives much like those built
into Logo implementations. The following Scheme procedures and
special forms are available (see most Logo texts for an explanation
of, and examples of, turtle graphics):

• fd steps procedure of one numerical argument
Causes the turtle to move forward by the given number of steps in
the direction that the turtle is pointing. If the turtle's pen is down, a
line will be drawn on the screen as the turtle changes position.

Example:
(fd 5)
Causes the turtle to move 5 units in its current direction.

• bk steps procedure of one numerical argument
Causes the turtle to move backward by the given number of steps.

• rt angle procedure of one numerical argument
Causes the turtle to turn right (clockwise as viewed from the top) by
the given number of degrees.

Example:
(rt 90)
Causes the turtle to do a "right face", shifting its heading 90 degrees
clockwise.

• lt angle procedure of one numerical argument
Causes the turtle to turn left (counterclockwise as viewed from the
top).

• pu procedure of no arguments
Causes the turtle to "pick up its pen", after which it will not draw
lines until the pen is subsequently "put back down."

Example:

HyperGami software documentation

(pu)

• pd procedure of no arguments
Causes the turtle to "put down its pen", after which the turtle will
draw lines when moved until the pen is subsequently "picked up."

• setpos x y procedure of two numerical arguments
Causes the turtle to shift its position (without changing heading) to
the point (x, y) on the screen. If the turtle's pen is down, a line is
drawn between the turtle's starting and final position.

Example:
(setpos 0 0)
Moves the turtle to the origin.

• getpos procedure of no arguments
When called on no arguments, returns a list of the turtle's current x-
and y-coordinates.

• seth heading procedure of one numerical argument
Causes the turtle to set its current heading to the desired value. Note
that a heading of 0, by Logo tradition, corresponds to due north; 90
to due east; 180 to south; and 270 to west. Values outside of the range
0-360 are allowed, and cause the turtle to change its heading to the
given value mod 360. (For instance, heading values of 40, 400, or -320
are all equivalent.)

• geth procedure of no arguments
When called on no arguments, returns the turtle's heading (in the
coordinate system described under the seth procedure above).

• center-the-turtle procedure of no arguments
When called on no arguments, moves the turtle to the origin (0, 0),
without drawing any lines; and sets the turtle's heading to 0 (due
north). Essentially a "turtle reset."

• show-turtle procedure of no arguments
• hide-turtle procedure of no arguments

HyperGami software documentation

These procedures, when called on no arguments, render the turtle
visible or invisible, respectively. In general, if you are writing
programs that cause the turtle to execute many movements—and if
you are confident that the program does what you wish—then it is
wise to render the turtle invisible, as your programs will run much
faster. On the other hand, if you wish to see the turtle moving about
the screen, then you should render the turtle visible.

• repeat special form
The repeat special form in HyperGami is written to be similar in
meaning (though not quite similar in syntax) to Logo's REPEAT
form. In HyperGami, repeat is followed by at least two expressions:
the first expression should evaluate to a positive integer n, and the
remaining expressions denote a sequence of operations to perform n
times. Thus, to take a couple of examples:

(repeat 4 (fd 20) (rt 90))
This causes the turtle to move forward (by 20 steps) and turn right 90
degrees four times in succession. If the turtle's pen is down, this will
draw a square.

(repeat 6 (fd 10) (rt 60))
This causes the turtle to move forward (10 steps) and turn right 60
degrees, 6 times in succession. If the turtle's pen is down, this draws
a hexagon.

(repeat 6 (repeat 6 (fd 10) (rt 60)) (rt 60))
This causes the turtle to generate six hexagons (with 60 degrees
between them). That is the turtle repeats the following sequence six
times: "draw a hexagon; turn right by 60 degrees."

4.2b Turtle Menu Commands; Turtle Icon in the Paint window.

Pen Up
Pick up the turtle's pen. Equivalent to evaluating (pu) at the
interpreter.

Pen Down

HyperGami software documentation

Put down the turtle's pen. Equivalent to evaluating (pd).

Home
Move the turtle to the origin, drawing a line if the pen is down. Sets
the turtle's heading to 0 (north).

Center
Move the turtle to the origin, but avoiding drawing a line regardless
of the turtle's current pen state. Sets the turtle's heading to 0 (north).
Equivalent to evaluating (center-the-turtle) at the interpreter.

Show or Hide Turtle
If the turtle is visible (invisible), renders it invisible (visible).

Turtle Icon in the Paint Window
If the turtle is visible in the TwoD window, you can use the mouse to
drag the turtle about. Here's how you do it: select the turtle icon (the
little triangle) in the Paint window; then select the turtle itself, in the
TwoD window, holding the mouse button down directly over the
turtle's center. Now, as long as the mouse button is held down, you
can drag the turtle all about the window. When the turtle is
positioned where you want it, simply release the mouse button.

Likewise, if you click and hold the mouse button down near the
turtle's front tip, you can use the mouse to turn the turtle to the
desired heading (the turtle will turn to face the current position of
the mouse).

4.3 Defining new colors

4.3a. Color-related primitives in HyperGami
In HyperGami, colors are represented as lists of three nonnegative
integers in the range (0, 65535). These three integers represent the
red, green, and blue components of the color, respectively. The
following Scheme primitives are built into HyperGami for dealing
with colors:

• make-color-object r g b procedure of three positive integer
arguments

HyperGami software documentation

Calling make-color-object on three nonnegative integers in the
range (0, 65535) produces a color with the appropriate amounts of
red, green, and blue, respectively.

Examples:

(define brown (make-color-object 30000 20000 10000))
This expression creates a color object (which would appear brown if
shown on the screen), and gives the name brown to it.

(define purple (make-color-object 60000 0 60000))
This expression creates a color object named purple with large
amounts of red and blue (and no green component).

• set-color! colorobj procedure of one color-object argument
Calling set-color! on a color object as argument sets the pen color
(and also the turtle's drawing color) to the given color object.

Example:

(set-color! purple)
Assuming that the color object purple had been defined as shown
earlier, this expression would cause the current pen color (and turtle
color) to change to purple. Thus, drawing with the pen (or
evaluating turtle commands) immediately after evaluating this
expression would cause the pen to draw in purple. Likewise, filling a
region (without selecting a new color) after evaluating this
expression would cause the region to fill in purple.

• get-color-red colorobj
• get-color-green colorobj
• get-color-blue colorobj procedures of one color-object
argument

These procedures return the red (green, blue) component of a color
object.

Example:

>> (get-color-red purple)
60000

HyperGami software documentation

Evaluating (get-color-red purple) returns the red component of the
color object purple.

• set-custom-color! colornumber colorobj
procedure of one integer (1 or 2) and one color

object

This procedure should be called on two arguments: the first
argument should be either the integer 1 or 2, and the second
argument should be a color object. The result of evaluating this
expression will be to set one of the two empty circles in the Paint
window to the desired color object (at which point it may be used just
like any other color).

Example:

(set-custom-color! 1 brown)
Evaluating this expression would fill the first of the two blank circles
in the Paint window to a brown color. This may now be selected just
like any other available color in HyperGami.

• interpolate-between-colors colorobj1 colorobj2
fraction

procedure of two color objects and a number
in the

range [0, 1]
This procedure, when called on two color objects and a number in the
range [0, 1], will return a new color object calculated by interpolating
(in RGB-values) between the first color and the second by the
appropriate fraction. Thus,

(interpolate-between-colors brown purple 0.5)

returns the color object whose R, G, and B values are 45000, 10000,
and 35000, respectively. Similarly,

(interpolate-between-colors brown purple 1)

HyperGami software documentation

returns a color object whose R, G, and B values are the same as those
of the color object named purple.

4.3b Some Named Colors in HyperGami

The following color names (among others) are predefined in
HyperGami:
red (60000 0 0))
green (0 60000 0)
blue (0 0 60000)
rgbblack (0 0 0)
rgboffwhite (60000 60000 60000)
yellow (59000 49000 32000)
orange (59500 24500 16000)
lightred (60000 20000 20000)
lightgreen 31000 64000 31000)
lightblue (20000 20000 60000)
darkgrey (18000 18000 18000)
lightgrey (45000 45000 45000)
reallywhite (65000 65000 65000)
pinkish (60600 32600 25800)
lime (0 64000 34000)
cyan (0 50000 50000)
beige (50150 41650 27200)

HyperGami software documentation

