
CSCI 5582
Problem Set 2
Handed Out: Wednesday, Oct. 1
Due Back: Wednesday, Oct. 29

Extra problem (for 10 points credit on Problem Set 1)
This is an optional problem -- the points earned will be added to your score
on problem set 1.

Write a procedure named make-number-or-list-procedure. This should take
as its argument a numerical function f, and return a procedure which will
"expand" the original function f so that it applies to either numbers or
arbitrarily-nested lists of numbers. The newly-returned procedure behaves
like f when called on a number; when called on a list of numbers, it returns a
new list whose elements are just the result of calling f on each element of the
argument list. Arbitrarily nested lists behave similarly—the nesting structure
of the argument list is preserved, and f is applied to each numerical element
of the original list.

Here are a couple of examples:

(define double-on-number-or-list
 (make-number-or-list-procedure double))

>>>(double-on-number-or-list 4)
8

>>>(double-on-number-or-list '(2 3 4))
(4 6 8)

>>>(double-on-number-or-list '(2 (3 4) (5) 6))
(4 (6 8) (10) 12)

>>>((make-number-or-list-procedure 1+) '(((1)) 2 3))
(((2)) 3 4)

Problem 1. (30 pts)
(a) In this problem, we return to the simple peg-jumping puzzle from
Problem 2 of the first problem set. As a preliminary step, calculate how many
distinct states there are of the (7-hole) puzzle. Write an expression for the
number of distinct states there are in the (2n+1) - hole version of the puzzle.

(b) Use procedures for both depth-first search and breadth-first search to solve
the puzzle. (If need be, you can use the data structure and procedures
provided in your answers to the previous problem set.) What are the
characteristics of these two search procedures applied to this puzzle? Note
that in actually writing programs to solve the puzzle, you have to make some
decisions about generating next moves: for instance, a very naive depth-first
search procedure might "loop" by following a search path in which a single
peg is moved back and forth forever.

(c) How would you construct an A* search strategy for this puzzle? What
corresponds to the "least cost" and what might correspond to a viable
estimation function?

(d) How do the various search strategies that you have considered perform as
the puzzle gets extremely large? How does the length of the solution path
increase with the size of the puzzle? (Use order-of-growth notation in
answering the second question.)

Problem 2. (70 pts)
Note: You are encouraged to work in two-person teams for this problem.

In this problem, you will write a procedure to play the game "Connect-4". The
game is played on a board of six rows by seven columns. Each column may be
thought of as a "tube" into which a player might drop a (black or white)
marble; the marble falls to the lowest empty position in the tube. Two players
(call them W and B) take alternate moves, at each move dropping a single
marble into one column. (Assume, as in chess, that white plays first.) The
winner is the first player to achieve four marbles of his or her color in a
horizontal, vertical, or diagonal row.

Our data structure for this game will be a list of seven lists, each representing
a current column of the game board. Thus, the initial state of the game is
represented by:

'(() () () () () () ())

Here are the first few moves of a sample play of the game:

'(()
()
()
()
()
()
()

)
'(()

()
(W)
()
()
()
()

)
'(()

()
(W)
()
()
(B)
()

)
'(()

(W)
(W)
()
()
(B)
()

)
'(()

(W)
(W)
(B)
()
(B)
()

)
'(()

(W)
(W W)
(B)
()
(B)
()

)
'(()

(W B)
(W W)
(B)
()
(B)
()

)

Note that a player's marble is added to the end of a list representing a column.
Also note that a player cannot add a seventh marble to a column that already
has six marbles in it.

(a) (0 pts; warmup) Play a few games of Connect-4 with a friend (or your
teammate for the problem) to familiarize yourself with the rules and strategy.

(b) Peform some preliminary analysis of the game. What is the branching
factor for the search tree for this game? Make a rough estimate of the number
of distinct Connect-4 games that can be played; also, calculate the number of
distinct possible "full" game boards (with 21 of each marble type) that could
exist (ignore the fact that many of these game boards will correspond to games
that would have ended before the board was filled up). This latter quantity is a
(somewhat hazy) ballpark estimate of the number of possible states that could
be encountered in a full space of legal game positions.

(c) Write a procedure named CN-[yourinitials] of the following form: the
procedure should take two arguments, a symbol (either W or B) and a game-
state. Your procedure should return as its result a new game-state
representing the chosen move of the given player (W or B), or the symbol
FAIL if you wish to concede. Thus, a sample call to my procedure might look
like this (note that I've written the game-board in a more readable format):

>>> (CN-ME 'W
'((W B)

(B W)
(W)
()
(B)
()
(W B)

))

'((W B)
(B W)
(W W)
()
(B)
()
(W B)
)

You should send in your procedure (and all subsidiary procedures) by email.
It is probably a good idea to give all the procedures in your code a special
suffix (e.g., your initials) to ensure that your procedure names do not clash
with those of the other player.

All working procedures will be entered in a classwide Connect-4 tournament
(and yes, there will be prizes for the most successful procedures!). The rules of
the tournament are as follows:

(i) Your procedure should be callable as either cnproc1 or cnproc2 from the
following (skeletal) tournament procedure:

(define (tournament-game cnproc1 cnproc2)
 (game-play cnproc1 cnproc2 'W '(() () () () () () ())))

(define (game-play cnproc1 cnproc2 color-to-play game-so-far)
 (cond ((game-over? game-so-far) ; the other guy made 4 in a row
 (print-winner (switch-color color-to-play) game-so-far))
 (else
 (let ((next-game
 (if (eq? color-to-play 'W)
 (cnproc1 color-to-play game-so-far)
 (cnproc2 color-to-play game-so-far))))
 (cond ((eq? next-game 'fail)
 (print-winner (switch-color color-to-play)
 game-so-far))
 (else
 (game-play cnproc1 cnproc2
 (switch-color color-to-play)
 next-game)))))))

If you wish to test your procedure in the program above, you should write
your own versions of the procedures game-over?, print-winner, and switch-
color.

(ii) If your procedure causes the tournament program to halt with an error, or
if it supplies an illegal move (e.g., adding two marbles at a time) it will be
disqualified from the tournament. Also, all procedures will be tested against a
random (legal) move-generator; any procedure requiring more than 4
minutes or so to make a move will be disqualified.

(iii) Your program should include documentation indicating the strategy
behind your procedure. Explain any ideas that you may have used to build a
static evaluation function, and what types of move-generating strategy you
used. Procedures will be graded on a combination of their (failure-free)
participation in the tournament; their sophistication; and the overall quality
of the code, documentation, and accompanying discussion.

Due Wed. Oct. 22:
Hand in a one-page transcript showing your program in competition with
that of another team.

