
Eisenberg/Fischer 1

AI Course, Fall97

Rules, Substrates and Cognitive
Modelling

—
Winston, Chapter 8

Michael Eisenberg and Gerhard Fischer
TA: Ann Eisenberg

AI Course, Fall 1997

Eisenberg/Fischer 2

AI Course, Fall97

Explanation in Rule-Based Systems

To answer a question about the reasoning done by a rule-
based deduction system,

• If the question is a how question, report the
assertions connected to the if side of the rule that
established the assertion referenced in the question.

• If the question is a why question, report the

assertions connected to the then sides of all rules
that used the assertion referenced in the question.

Eisenberg/Fischer 3

AI Course, Fall97

Certainty Factors

• in many domains: conclusions are rarely certain

• certainty-computing procedures associate a probability

between 0 and 1 with each assertions
certainty factor = 0 ---> an assertion is definitely
false
certainty factor = 1 ---> an assertion is definitely
true

• used extensively in Mycin

Eisenberg/Fischer 4

AI Course, Fall97

 Knowledge Acquisition

domain expert: a person with expertise in a specific area

knowledge engineer: extracts useful knowledge from
domain experts for use by computers

challenge: to make domain experts articulate knowledge,
we have to provide them with evocative stimulation
(because human knowledge is tacit)

Powerful Idea: to learn from an expert,
• Ask about specific situations to learn the expert's

general knowledge.

• Ask about situation pairs that look identical, but that

are handled differently, so that you can learn the
expert's vocabulary.

Eisenberg/Fischer 5

AI Course, Fall97

Rule-Based Systems

Strengths:
• Rule-based systems solve many problems.

• Rule-based systems answer simple questions about

hoe they reach their conclusions.

Weaknesses:
• They do not reason on multiple levels.

• They do not use constraint-exposing models.

• They do not look at the problem from different

perspectives.

• They do not know how and when to break their own

rules.

• They do not have access to the reasoning behind

their rules.

Eisenberg/Fischer 6

AI Course, Fall97

Rule-Based Systems as Models for Human
Problem Solving

in human problem solving:
• if-then rules ----> production

systems
• working memory -----> short-term

memory
• rule base -----> long-term

memory

protocol analysis:
• The state of knowledge is what the subject

knows. Each time the subject acquires
knowledge through his senses, makes a
deduction, or forgets something, the state of
knowledge changes.

• The problem-behavior graph is a trace of a

subject moving through states of knowledge as
he solves a problem.

Eisenberg/Fischer 7

AI Course, Fall97

SOAR — A Cognitive Architecture

A preference net is a representation that is a state space
in which

• Absolute preferences are identified by Is links that
connect states to acceptable, rejected, best, and
worst nodes.

• Relative preferences are identified by better, worse,

and indifferent links that connect states to each
other.

Eisenberg/Fischer 8

AI Course, Fall97

SOAR’s Automatic Preference Analyzer
To determine the preferred state using SOAR's automatic
preference analyzer,
• Collect all the states that are labeled acceptable.
• Discard all the acceptable states that are also labeled

rejected.
• Determine dominance relations as follows:

- State A dominates state B if there is a better link
from A to B but no better link from B to A.

- State A dominates state B if there is a worse link
from B to A but no worse link from A to B.

- A state labeled best, and not dominated by
another state, dominates another states.

- A state labeled worst, which does not dominate
any other state, is dominated by all other states.

• Discard all dominated states.
• Select the next state from among those remaining as

follows:
- If only one state remains, select it.
- Otherwise, if no states remain, select the current

state, unless it is marked rejected.
- Otherwise, if all the remaining states are

connected by indifferent links,
* If the current state is one of the remaining
states, keep it.
* Otherwise, select a state, at random.

• Otherwise, announce an impasse.

Eisenberg/Fischer 9

AI Course, Fall97

Production Systems

• advantage: simplicity and uniformity of their structure

• productions of two kinds:
- test on the contents of short term memory

(STM); e.g.: "If your goal is to enter the house,
open the door" (goal driven)

- test on the contents of the world; e.g.: "If the door
is locked, use your key" (data driven)

Eisenberg/Fischer 10

AI Course, Fall97

A Production System as Foundation for
Learning from Examples

9X + 17 = 6X + 23
3X + 17 = 23 (subtract 6X from both
sides)
 3X = 6 (subtract 17 from both
sides)

 X = 2 (divide both sides by 3)

production system:
- if expression has the form <variable> = <real

number>
---> halt

- if expression has variable term on right side

---> subtract variable term from both sides
and simplify

- if expression has numerical term on left side
 ---> subtract numerical term from both sides

and simplify

- if variable term has coefficient other than unity
---> divide both sides by coefficient

Eisenberg/Fischer 11

AI Course, Fall97

Critiquing

• critiquing = presenting a reasoned opinion about a
user’s product or action

• critics make the constructed artifact “talk back” to the
users (beyond the “back-talk” provided by the
materials)

• critics should be embedded into domain-oriented
design environments

• critiquing process:
- goal acquisition:
- product analysis:

* differential: compare system and user
generated solution

* analytical: checks products against
predefined features

- critiquing strategies:
* intrusiveness: active versus passive (see

VDDE)
* adaptation capability (disable critics)
* explanation and argumentation

• classes of critics:
- educational and/versus performance: primary

objective is learning and/versus better product
- negative and/versus positive

Eisenberg/Fischer 12

AI Course, Fall97

Example: LISP Critic — Transform a
“COND” into an “And”

(rule cond-to-and-1 ;;; the name of the rule
 (cond (?condition ?action)) ;;; the original code
 ==>
 (and ?condition ?action) ;;; the replacement
 safe (machine people)) ;;; rule category

Example:
 (cond (value (eq (cadr value) 1.0)))
 ---> (and value (eq (cadr value) 1.0))

Eisenberg/Fischer 13

AI Course, Fall97

Example: LISP Critic — Replace a Copying
Function with a Destructive Function

(rule append/.1-new.cons.cells-to-nconc/.1... ;;; the name
of the rule
 (?foo:{append append1} ;;;
 (restrict ?expr ;;; the
condition (rule can only be

(cons-cell-generating-expr expr)) ;;; applied if
cons cells

?b) ;;; are
generated by "?expr")
 ==>
 ((compute-it: ;;;
 (cdr (assq (get-binding foo) ;;;
 '((append . nconc) ;;; the
replacement
 (append1 . nconc1))))) ;;;
 ?expr ?b) ;;;
 safe (machine)) ;;; rule
category

Example (see illustration by Kaestle)
(append (explode word) char) =====> (nconc (explode

word) char)

Eisenberg/Fischer 14

AI Course, Fall97

Example — Janus / Kid: Domain-Oriented
Design Environments with Critiquing

• critic rules analyze the current construction situation and
display critic messages if they detect suboptimal designs

• critiquing is implemented as a rule based system;

condition of a critiquing rule: spatial relation — examples:
- away-from (stove, door)
- next-to (dishwasher, sink)
- in-front-of (sink-window)
- work-triangle-small-enough (stove,
refrigerator, sink)

• a critic rule that checks for blocked doors:
name: NOT-DOOR-BLOCKED
parameters: x y
condition: (not (overlaps (relative-rectangle x

:top-y (depth x) :depth (width
x)) y))

critique: The door of ~A is blocked by ~B.
praise: The door of ~A is not blocked by ~B.
documentation: A door of a design unit is blocked if

another design unit is in the
area in front of the first one.

Eisenberg/Fischer 15

AI Course, Fall97

Using Examples for Defining New Rules
—

Steps towards Machine Learning

refrige-
rator

Positive Example Negative Example

Eisenberg/Fischer 16

AI Course, Fall97

Summary
• The simplicity rule-based deduction systems enables you to

build extremely useful modules on top of a basic chaining
procedure.

• Explanation modules explain reasoning by using a goal tree

to answer how and why questions. Acquisition modules assist
knowledge engineers in knowledge transfer from a human
expert to a collection of rules.

• Two key heuristics enable knowledge engineers to acquire

knowledge from human experts. One is to work with specific
situations; another is to ask about situation pairs that look
identical, but are handled differently.

• Rule-based systems can behave like idiot savants. They do

certain tasks well, but they do not reason on multiple levels,
they do not use constraint-exposing models, they do not look
at problems from different perspectives, they do not know
how and when to break their own rules, and they do not have
access to the reasoning behind their rules.

• Rule-based systems can model some human problem

solving. SOAR, the most highly developed rule-based model
of human problem solving, uses an automatic preference
analyzer to determine what to do, instead of using a fixed
conflict-resolution strategy.

