
Wisdom is not the product of schooling
but the lifelong attempt to acquire it.

- Albert Einstein

Problem Solving — Game Playing:
Dealing with Adversaries in Exploring Alternatives

Gerhard Fischer

AI Course, Fall 1996, Lecture September 23rd

1

Why Study Games in AI?

• problems are formalized

• real world knowledge (common sense knowledge) is not too important

• rules are fixed

• adversary modeling is of general importance (e.g., in economic situations, in
military operations,)

- opponent introduces uncertainty
- programs must deal with the contingency problem

• complexity of games??
- number of nodes in a search tree (e.g., 1040 legal positions in chess)
- specification (missing information, ill-defined problems, semantically

rich problems)

2

Game Playing - Overview

• games as search problems

• perfect decisions in two person games

• imperfect decisions

• alpha-beta pruning

• games with a chance

• state-of-the-art game programs

3

Examples

• Nim

• Tic-Tac-Toe

• Checkers

• Othello

• Chess (programs play at Grandmaster level)

• Go

• Backgammon (program has beaten the world champion, but ...)

• Blackjack

4

Formal Definition of Games as Search Problems

• initial state: board position + whose move

• a set of operators defining the legal moves of a player

• terminal test determining when the game is over

• utility function giving a numeric value for the outcome of a game (chess: +1, 0,
and -1; backgammon: +192 to -192

5

Search Procedures

• MINI-MAX ---> static evaluation; conclusions about what to do at the deeper
nodes of the search tree percolate up to determine what should happen at
higher nodes

• ALPHA-BETA
- there is no need to explore disastrous moves any further

- can be augmented by a number of heuristic pruning procedures
(danger: optimal moves may not be selected)

• general trade-off:
- look-ahead operations

- pattern-directed play

6

Minimax Algorithm

• generate the whole game tree, all the way down to the terminal states

• apply the utility function to each terminal state to get its value

• use the utility function of the terminal states to determine the utility of the nodes
one level higher up in the search tree

• continue backing up the values from the leaf node toward the root, one layer at
a time

• top of the tree: MAX chooses the move that lades to the highest value =
minimax decision (maximizes the utility under the assumption that the
opponent will play perfectly to minimize it)

• minimax search is depth-first

7

Heuristic Evaluation Functions

• allow us to approximate the true utility of a state without doing a complete
search

• changes:
- utility function is replaced by an heuristic evaluation function EVAL
- terminal test is replaced by a cutoff test CUTOFF-TEST

• example for Tic-Tac-Toe (and Number Scrabble): static value associated with
each field:

- center: 4
- corners: 3
- middle field of a row: 2

• chess:
- material value: pawn=1 — knight or bishop=3 — rook=5 — queen=9
- other features: good pawn structure, king safety, mobility,

8

Alpha-Beta Pruning

• basic idea: it is possible to compute the correct minimax decision without
looking at every node in the search tree ---> pruning (allows us to ignore
portions of the search tree that make no difference to the final choice)

• general principle:
- consider a node n somewhere in the tree, such that a player has a

chance to move to this node

- if player has a better chance m either at the parent node of n (or at any
choice point further up) then n will never be reached in actual play

• effectiveness:
- depends on the ordering in which the successors are examined

- try to examine first the successors that are likely to be best

9

Game Playing: Case Study Othello — Questions to Think
about

• how would you write a game playing program for Othello?

• what kind of evaluation function would you use or would you not use?

• what is the most difficult aspect of playing the game well?

• if you are an experienced Othello player, articulate some of your Othello
knowledge

10

Rules

• each player takes 32 discs and chooses one color (64 discs are available to
play)

• move: "outflanking" your opponent ---> then flipping the outflanked discs to
your color

• definition of "outflank": establishing a domain vocabulary

• black moves first ---> then take turns if legal moves are available

• if a move is available ---> one must take it

• outflanking occurs in all directions: horizontally, vertically, diagonally

• all discs outflanked in any one move must be flipped (even if it is to the player's
disadvantage)

• end of game: when it is no longer possible for either player to move (either
because all squares are filled or no legal move is available)

11

Incremental Development of Game Playing Programs

• let humans play against each other
- the program serves as a representational media

- the program checks for legal moves

• humans against program
- legal moves by the program
- good moves by the program

• humans against program — the program being in the role of a coach

• program against program

• learning component (program improve its play by playing games)

12

Humans against Program — Incremental Additions to the
"Smartness" of the Program

• play randomly (but legal; may involve a non-trivial amount of knowledge /
computation)

• have a static value associated with each square on the board

• have a dynamically value associated with each square on the board

• have an evaluation function taking other factors into account (e.g., number of
pieces)

• search / look-ahead / exploring alternatives (using the evaluation function):
- look one move ahead

- look several moves ahead using minimax, alpha-beta,

13

Strategy

• goal is clear -- but how can we achieve the goal?

• corners are special: they can never be outflanked ---> question: how do we get
one of our pieces into the corner (backward reasoning)

• squares next to corners are not good

• border squares are desirable (they can only be outflanked in only two
directions)

• squares next to border squares are not desirable

• get control of the game: have many possible moves to choose from

• try to have as pieces of your color at any time in the game as possible

14

Rules themselves may be changed

• original set-up can vary:
b w
w b

or
b b
w w

• turn
- one direction
- all directions

• let the player decide

• an extended version of the program could handle all strategies

• in chess: many variations

15

Other Issues

• Othello as a computer game -- claim: brute-force search based on a good
evaluation function can yield excellent play

- number of legal moves is small (in most situations)

- humans have difficulties to "visualize" the long range consequences
of a move

• knowledge elicitation / acquisition techniques: two humans play the game
against each other and think-aloud

• thin spread of domain knowledge: claim: any amount of programming
knowledge (e.g., in Lisp, C,) will not allow you to write a program which
plays Othello well

16

