Center for

, LifeLong Wisdom is not the product of schooling

‘ : but the lifelong attempt to acquire it.
" L?ﬂfﬂiﬂg - Albert Einstein

Unwers:tg of Colorado at Boulder

Problem Solving — Game Playing:
Dealing with Adversaries in Exploring Alternatives

Gerhard Fischer

Al Course, Fall 1996, Lecture September 23rd

Why Study Games in Al?

problems are formalized
real world knowledge (common sense knowledge) is not too important
rules are fixed

adversary modeling is of general importance (e.g., in economic situations, in
military operations,)

- opponent introduces uncertainty

- programs must deal with the contingency problem

complexity of games??

- number of nodes in a search tree (e.g., 1040 legal positions in chess)
- specification (missing information, ill-defined problems, semantically
rich problems)

Game Playing - Overview

games as search problems

perfect decisions in two person games
imperfect decisions

alpha-beta pruning

games with a chance

state-of-the-art game programs

Examples

Nim

Tic-Tac-Toe

Checkers

Othello

Chess (programs play at Grandmaster level)

Go

Backgammon (program has beaten the world champion, but ...)

Blackjack

Formal Definition of Games as Search Problems

initial state: board position + whose move

a set of operators defining the legal moves of a player

terminal test determining when the game is over

utility function giving a numeric value for the outcome of a game (chess: +1, 0,
and -1; backgammon: +192 to -192

Search Procedures

MINI-MAX ---> static evaluation; conclusions about what to do at the deeper
nodes of the search tree percolate up to determine what should happen at
higher nodes

ALPHA-BETA
- there is no need to explore disastrous moves any further
- can be augmented by a number of heuristic pruning procedures
(danger: optimal moves may not be selected)
general trade-off:

- look-ahead operations

- pattern-directed play

Minimax Algorithm

generate the whole game tree, all the way down to the terminal states
apply the utility function to each terminal state to get its value

use the utility function of the terminal states to determine the utility of the nodes
one level higher up in the search tree

continue backing up the values from the leaf node toward the root, one layer at
a time

top of the tree: MAX chooses the move that lades to the highest value =
minimax decision (maximizes the utility under the assumption that the
opponent will play perfectly to minimize it)

minimax search is depth-first

Heuristic Evaluation Functions

allow us to approximate the true utility of a state without doing a complete
search

changes:
- utility function is replaced by an heuristic evaluation function EVAL
- terminal test is replaced by a cutoff test CUTOFF-TEST

example for Tic-Tac-Toe (and Number Scrabble): static value associated with
each field:

- center: 4
- corners: 3
- middle field of a row: 2

chess:
- material value: pawn=1 — knight or bishop=3 — rook=5 — queen=9
- other features: good pawn structure, king safety, mobility,

Alpha-Beta Pruning

basic idea: it is possible to compute the correct minimax decision without
looking at every node in the search tree ---> pruning (allows us to ignore
portions of the search tree that make no difference to the final choice)

general principle:
- consider a node n somewhere in the tree, such that a player has a
chance to move to this node

- If player has a better chance m either at the parent node of n (or at any
choice point further up) then n will never be reached in actual play
effectiveness:

- depends on the ordering in which the successors are examined

- try to examine first the successors that are likely to be best

Game Playing: Case Study Othello — Questions to Think
about

how would you write a game playing program for Othello?
what kind of evaluation function would you use or would you not use?
what is the most difficult aspect of playing the game well?

If you are an experienced Othello player, articulate some of your Othello
knowledge

10

Rules

each player takes 32 discs and chooses one color (64 discs are available to
play)

move: "outflanking" your opponent ---> then flipping the outflanked discs to
your color

definition of "outflank™: establishing a domain vocabulary

black moves first ---> then take turns if legal moves are available

if a move is available ---> one must take it

outflanking occurs in all directions: horizontally, vertically, diagonally

all discs outflanked in any one move must be flipped (even if it is to the player's
disadvantage)

end of game: when it is no longer possible for either player to move (either
because all squares are filled or no legal move is available)

11

Incremental Development of Game Playing Programs

let humans play against each other
- the program serves as a representational media
- the program checks for legal moves

humans against program
- legal moves by the program
- good moves by the program

humans against program — the program being in the role of a coach
program against program

learning component (program improve its play by playing games)

12

Humans against Program — Incremental Additions to the
"Smartness" of the Program

play randomly (but legal, may involve a non-trivial amount of knowledge /
computation)

have a static value associated with each square on the board
have a dynamically value associated with each square on the board

have an evaluation function taking other factors into account (e.g., number of
pieces)

search / look-ahead / exploring alternatives (using the evaluation function):
- look one move ahead

- look several moves ahead using minimax, alpha-beta,

13

Strategy

goal is clear -- but how can we achieve the goal?

corners are special: they can never be outflanked ---> question: how do we get
one of our pieces into the corner (backward reasoning)

squares next to corners are not good

border squares are desirable (they can only be outflanked in only two
directions)

squares next to border squares are not desirable
get control of the game: have many possible moves to choose from

try to have as pieces of your color at any time in the game as possible

14

Rules themselves may be changed

original set-up can vary:

or

ST =S0OT
ST TS

turn
- one _dlrec_;tlon
- all directions

let the player decide

an extended version of the program could handle all strategies

iIn chess: many variations

15

Other Issues

Othello as a computer game -- claim: brute-force search based on a good
evaluation function can yield excellent play

- number of legal moves is small (in most situations)
- humans have difficulties to "visualize" the long range consequences

of a move

knowledge elicitation / acquisition techniques: two humans play the game
against each other and think-aloud

thin spread of domain knowledge: claim: any amount of programming
knowledge (e.g., in Lisp, C,) will not allow you to write a program which
plays Othello well

16

