Wisdom is not the product of schooling but the lifelong attempt to acquire it.

- Albert Einstein

Problem Solving — Game Playing:
Dealing with Adversaries in Exploring Alternatives

Gerhard Fischer

AI Course, Fall 1996, Lecture September 23rd
Why Study Games in AI?

• problems are formalized

• real world knowledge (common sense knowledge) is not too important

• rules are fixed

• adversary modeling is of general importance (e.g., in economic situations, in military operations,)
 - opponent introduces uncertainty
 - programs must deal with the contingency problem

• complexity of games??
 - number of nodes in a search tree (e.g., 10^{40} legal positions in chess)
 - specification (missing information, ill-defined problems, semantically rich problems)
Game Playing - Overview

• games as search problems
• perfect decisions in two person games
• imperfect decisions
• alpha-beta pruning
• games with a chance
• state-of-the-art game programs
Examples

• Nim
• Tic-Tac-Toe
• Checkers
• Othello
• Chess (programs play at Grandmaster level)
• Go
• Backgammon (program has beaten the world champion, but ...)
• Blackjack
Formal Definition of Games as Search Problems

• initial state: board position + whose move

• a set of operators defining the legal moves of a player

• terminal test determining when the game is over

• utility function giving a numeric value for the outcome of a game (chess: +1, 0, and -1; backgammon: +192 to -192)
Search Procedures

- **MINI-MAX** --- static evaluation; conclusions about what to do at the deeper nodes of the search tree percolate up to determine what should happen at higher nodes.

- **ALPHA-BETA**
 - there is no need to explore disastrous moves any further
 - can be augmented by a number of heuristic pruning procedures (danger: optimal moves may not be selected)

- **general trade-off:**
 - look-ahead operations
 - pattern-directed play
Minimax Algorithm

- generate the whole game tree, all the way down to the terminal states
- apply the utility function to each terminal state to get its value
- use the utility function of the terminal states to determine the utility of the nodes one level higher up in the search tree
- continue backing up the values from the leaf node toward the root, one layer at a time
- top of the tree: MAX chooses the move that leads to the highest value = minimax decision (maximizes the utility under the assumption that the opponent will play perfectly to minimize it)
- minimax search is depth-first
Heuristic Evaluation Functions

- allow us to approximate the true utility of a state without doing a complete search

- **changes:**
 - utility function is replaced by an heuristic evaluation function EVAL
 - terminal test is replaced by a cutoff test CUTOFF-TEST

- example for **Tic-Tac-Toe** (and Number Scrabble): static value associated with each field:
 - center: 4
 - corners: 3
 - middle field of a row: 2

- **chess:**
 - material value: pawn=1 — knight or bishop=3 — rook=5 — queen=9
 - other features: good pawn structure, king safety, mobility,
Alpha-Beta Pruning

- **basic idea:** it is possible to compute the correct minimax decision without looking at every node in the search tree \(\rightarrow\) **pruning** (allows us to ignore portions of the search tree that make no difference to the final choice)

- **general principle:**
 - consider a node \(n\) somewhere in the tree, such that a player has a chance to move to this node
 - if player has a better chance \(m\) either at the parent node of \(n\) (or at any choice point further up) then \(n\) will never be reached in actual play

- **effectiveness:**
 - depends on the ordering in which the successors are examined
 - try to examine first the successors that are likely to be best
Game Playing: Case Study Othello — Questions to Think about

• how would you write a game playing program for Othello?

• what kind of evaluation function would you use or would you not use?

• what is the most difficult aspect of playing the game well?

• if you are an experienced Othello player, articulate some of your Othello knowledge
Rules

• each player takes 32 discs and chooses one color (64 discs are available to play)

• move: "outflanking" your opponent ---> then flipping the outflanked discs to your color

• definition of "outflank": establishing a domain vocabulary

• black moves first ---> then take turns if legal moves are available

• if a move is available ---> one must take it

• outflanking occurs in all directions: horizontally, vertically, diagonally

• all discs outflanked in any one move must be flipped (even if it is to the player's disadvantage)

• end of game: when it is no longer possible for either player to move (either because all squares are filled or no legal move is available)
Incremental Development of Game Playing Programs

• let humans play against each other
 - the program serves as a representational media
 - the program checks for legal moves

• humans against program
 - legal moves by the program
 - good moves by the program

• humans against program — the program being in the role of a coach

• program against program

• learning component (program improve its play by playing games)
Humans against Program — Incremental Additions to the "Smartness" of the Program

• play randomly (but legal; may involve a non-trivial amount of knowledge / computation)

• have a static value associated with each square on the board

• have a dynamically value associated with each square on the board

• have an evaluation function taking other factors into account (e.g., number of pieces)

• search / look-ahead / exploring alternatives (using the evaluation function):
 - look one move ahead
 - look several moves ahead using minimax, alpha-beta,
Strategy

• goal is clear -- but how can we achieve the goal?

• corners are special: they can never be outflanked ---> question: how do we get one of our pieces into the corner (backward reasoning)

• squares next to corners are not good

• border squares are desirable (they can only be outflanked in only two directions)

• squares next to border squares are not desirable

• get control of the game: have many possible moves to choose from

• try to have as pieces of your color at any time in the game as possible
Rules themselves may be changed

- original set-up can vary:

 b w
 w b
 or
 b b
 w w

- turn
 - one direction
 - all directions

- let the player decide

- an extended version of the program could handle all strategies

- in chess: many variations
Other Issues

• Othello as a computer game -- claim: brute-force search based on a good evaluation function can yield excellent play

 - number of legal moves is small (in most situations)

 - humans have difficulties to "visualize" the long range consequences of a move

• knowledge elicitation / acquisition techniques: two humans play the game against each other and think-aloud

• thin spread of domain knowledge: claim: any amount of programming knowledge (e.g., in Lisp, C,) will not allow you to write a program which plays Othello well