Wisdom is not the product of schooling
but the lifelong attempt to acquire it.
- Albert Einstein

Solving Problems by Search
—
Chapter 3 in Russell / Norvig Book

Gerhard Fischer

AI Course, Fall 1996, Lecture September 16
Overview

• **problem solving agents**: goals, goal formulation, problem formulation

• **formulating problems**: knowledge and problem types, well- and ill-defined problems

• **example problems**: toy problems and real world problems, semantically poor and rich problems

• **searching for solutions**: generating action sequences, data structures for search trees

• **search strategies**: breath first, depth first, bi-directional search

• **avoiding repeated states**: record the states which have been visited

• constraint satisfaction search: states are defined by variables, goal test specifies a set of constraints
Well-Defined versus Ill-Defined Problems

• **Well-Defined Problems:**
 - the essential conditions of the problem are stated
 - their solutions are the same for all problem solvers
 - examples: school problems, mutilated checker board, implementing given algorithms

• **Ill-Defined (or Wicked) Problems:**
 - problem solver takes an active role what the problem is
 - fill gaps in the problem definition
 - jump into the problem
 - use information gained while trying to solve the problem
 - examples: architects, engineers, lawyers, legislators, software, designers, writers, teachers,
Semantically Rich Domains versus Semantically Poor Domains

- **“poor”**
 - knowledge in cryptarithmetic problems: numbers, how to add and subtract, facts about parity
 - puzzles (missionaries and cannibals)

- **“rich”**
 - driving a taxi in a big city
 - medicine
 - law
 - using Unix, Word, Excel,(high functionality applications)

- **questions: what is**
 - chess
 - programming
Problem Solving and Search — Cryptarithmetic Problems

\[
\begin{array}{c}
\text{DONALD} \\
+ \text{GERALD} \\
\hline
\text{ROBERT}
\end{array}
\quad =
\begin{array}{c}
\text{CROSS} \\
+ \text{ROADS} \\
\hline
\text{DANGER}
\end{array}
\quad D=5
\]

- sophisticated strategy (= more knowledge) ----> less search
- brute force search: 10! = 3,628,800 possibilities
- with D = 5 ----> 9! = 362,880
Number Scrabble

- two person game
- nine cards: 1, 2, 3, 4, 5, 6, 7, 8, 9
- cards are placed face up
- players draw alternately, one at a time, selecting any of the remaining cards
- goal: to have drawn cards so three of them add up to 15 (before the opponent can do so)
Tic-Tac Toe
Search Strategies

completeness: is the strategy guaranteed to find a solution when there is one?

time complexity: how long does it take to find a solution?

space complexity: how much memory does it need to perform the search?

optimality: does the strategy find the highest-quality solution when there are several different solutions?

uninformed search: no information about the number of steps or the path cost from the current state to the goal — all they can do: distinguish a goal state from a non-goal state

informed search (or heuristic search): use information, heuristics, guesses about the search space (chapter 4 in Russell / Norvig)
Example Problem

—

Going from the Engineering Center to the Flagstaff House

• well-defined or ill-defined?

• breath-first search

• depth first search