;7 A programfor playing the Prisoner's Dilenm

;; Each player's strategy is represented as a procedure
;; that takes two arguments -- the player's own history
;; and the other player's history -- and returns either
;; the synbol C (for cooperate) or D (for defect).

;; The standard PD gane matrix

(define *game-matri x*

;; The top level procedure, called on two argunents
;; corresponding to the two players' strategies

(define (play-loop pl-strategy p2-strategy)
(pl ay-1 oop- hel per
pl-strategy p2-strategy
0'() "() (+ 90 (random 21))))

(define (play-1oop-helper pl p2 count historyl history2 limt)
(cond ((= count limt) (print-out-results historyl history2 limt))
(el se
(let ((resultl (pl historyl history?2))
(result2 (p2 history2 historyl)))
(pl ay-1 oop- hel per
pl p2 (+ 1 count)
(cons resultl historyl)
(cons result2 history2)

limt)))))
;; Making a "full game" data structure

(define (make-gane pl ayer-1-choice player-2-choice)
(l'ist player-1-choice player-2-choice))

(define (get-point-1list-for-game gane)
(cadr (assoc gane *ganme-matrix*)))

(define (get-player-points player-no gane)
(list-ref (get-point-list-for-gane gane) (- player-no 1)))

;7 Ahistory is just a list of the given player's responses:
;; Each player's choices in the ganes played so

;; far will be represented in an individual "gane history”
;; consisting of Cs and D s.

(define (extend-player-history this-play history)
(cons this-play history))



(define (enpty-history? history)
(nul'l? history))

(define (nost-recent-play history)
(car history))

(define (rest-of-plays history)
(cdr history))

;; The next two procedures are sinply for printing out
;; the net results of ganes

(define (print-out-results histl hist2 nunber-of - games)
(let ((scores (get-scores histl hist2)))
(display "Player 1 Score: ")
(display (/ (car scores) nunber-of-ganes))
(new i ne)
(display "Player 2 Score: ")
(display (/ (cadr scores) nunber-of-ganes))
(new i ne)
' done))

(define (get-scores histl hist?2)
(let ((games (map list histl hist2)))
(define (scoreloop gns resultl result?2)
(cond ((null? gns) (list resultl result2))
(el se (scoreloop (cdr gns)
(+ resultl
(get-player-points 1 (car gms)))
(+ result2

(get-player-points 2 (car gnms)))))))
(scorel oop ganmes 0 0)))

;; Three sinple gane-playing strategies

(define (poor-trusting-fool ny-history other-guy)
‘C)

(define (all-defect ny-history other-guy)
ID)

(define (random strategy ny-history other-guy)
(if (= (random?2) 0) 'C'D))

;5 >>> (play-1oop random strategy random strategy)
;; Player 1 Score: 2.4

;» Player 2 Score: 2.3523809523809525

;; done

;3 >>> (play-loop poor-trusting-fool all-defect)
;; Player 1 Score: O

;; Player 2 Score: 5



; done

; >>> (play-1oop poor-trusting-foo

; Player 1 Score: 1.5326086956521738
; Player 2 Score: 3.9782608695652173
; done

random st r at egy)



