
Lecture 3. Recursion

3.1 "Thinking Recursively"

Reading: Programming in MacScheme, Chapters 4 and 5.

3.2 The Sierpinski Triangle

(define (nested-triangle size level)
 (cond ((= level 0) 0)
 (else (repeat 3
 (nested-triangle (/ size 2) (- level 1))
 (fd size)
 (rt 120)))))

(nested-triangle 5 1)
(nested-triangle 10 2)
(nested-triangle 20 3)
(nested-triangle 40 4)

(nested-triangle 160 6)

4.1

3.3 A "Sierpinski Square"?

(define (nested-square size level)
 (cond ((= level 0) 0)
 (else (repeat 4
 (nested-square (/ size 3) (- level 1))
 (fd size)
 (rt 90)))))

(nested-square 5 1)
(nested-square 15 2)
(nested-square 45 3)

(nested-square 140 5)

4.2

3.3 A General Nested-Polygon Procedure

 (define (nested-poly nsides ratio size level)
 (cond ((= level 0) 0)
 (else (repeat nsides
 (nested-poly nsides ratio
 (/ size ratio) (- level 1))
 (fd size)
 (rt (/ 360 nsides))))))

(nested-poly 5 2.65 80 4)

4.3

3.4 Making Tree-Like Shapes

(define (branch length level)
 (cond ((= level 0) 0)
 (else (fd length)
 (lt 60)
 (branch (/ length 2) (- level 1))
 (rt 120)
 (branch (/ length 2) (- level 1))
 (lt 60)
 (bk length))))

(branch 50 1)

(branch 50 2)

(branch 50 6)

4.4

(define (branch length angle ratio level)
 (cond ((= level 0) 0)
 (else
 (fd length)
 (lt angle)
 (branch (/ length ratio) angle ratio (- level 1))
 (rt (* 2 angle))
 (branch (/ length ratio) angle ratio (- level 1))
 (lt angle)
 (bk length))))

(branch 50 30 1.6 8)

4.5

(define (feather size level)
 (cond ((= level 0) 0)
 (else (repeat 8 (fd (/ size 8))
 (lt 60)
 (feather (/ size 4) (- level 1))
 (rt 120)
 (feather (/ size 4) (- level 1))
 (lt 60))
 (bk size))))

(feather 80 3)

4.6

3.5 The Koch Snowflake

(define (snowflake size level)
 (cond ((= level 0) (fd size))
 (else (snowflake (/ size 3) (- level 1))
 (lt 60)
 (snowflake (/ size 3) (- level 1))
 (rt 120)
 (snowflake (/ size 3) (- level 1))
 (lt 60)
 (snowflake (/ size 3) (- level 1)))))

(snowflake 60 0)
(snowflake 60 1)
(snowflake 60 2)

(repeat 3 (snowflake 150 5) (rt 120))

4.7

3.6 The Dragon Curve

(define (left-dragon size level)
 (cond ((= level 0) (fd size))
 (else (left-dragon size (- level 1))
 (lt 90)
 (right-dragon size (- level 1)))))

(define (right-dragon size level)
 (cond ((= level 0) (fd size))
 (else (left-dragon size (- level 1))
 (rt 90)
 (right-dragon size (- level 1)))))

(left-dragon 4 8)

(left-dragon 2 11)

4.8

3.7 The Hilbert Curve

(define (left-hilbert side level)
 (cond ((= level 0) 0)
 (else
 (left 90)
 (right-hilbert side (- level 1))
 (fd side)
 (right 90)
 (left-hilbert side (- level 1))
 (fd side)
 (left-hilbert side (- level 1))
 (right 90)
 (fd side)
 (right-hilbert side (- level 1))
 (left 90))))

(define (right-hilbert side level)
 (cond ((= level 0) 0)
 (else
 (right 90)
 (left-hilbert side (- level 1))
 (fd side)
 (left 90)
 (right-hilbert side (- level 1))
 (fd side)
 (right-hilbert side (- level 1))
 (left 90)
 (fd side)
 (left-hilbert side (- level 1))
 (right 90))))

(left-hilbert 20 1)

(left-hilbert 20 2)

4.9

(right-hilbert 4 5)

4.10

3.8 Pairs: Gluing Data Objects Together

The reading for most of the material in the remainder of this lecture can be
found in Chapter 8 of Programming in MacScheme.

The cons procedure creates new pairs:

>>> (cons 1 2)
(1 . 2)

The result of evaluating this call to cons is a new pair object which, in box-
and-pointer notation, would be drawn as follows:

>>> (define new-pair (cons 5 6))
new-pair
>>> new-pair
(5 . 6)
>>> (car new-pair)
5
>>> (cdr new-pair)
6

4.11

3.9 Pairs can be combined into larger structures

The box-and-pointer notation for three-numbers-glued would look like this:

>>> (define three-numbers-glued
 (cons (cons 7 8) 9))
three-numbers-glued
>>> three-numbers-glued
((7 . 8) . 9)
>>> (car three-numbers-glued)
(7 . 8)
>>> (cdr three-numbers-glued)
9
>>> (car (car three-numbers-glued))
7

4.12

3.10 Lists

Generally, Scheme and Lisp programmers use a kind of "standard"
arrangement for pairs in which a number of pairs are linked together so that
the final CDR arrow points to the special object "nil":

>>> (define one-thru-four
 (cons 1 (cons 2 (cons 3 (cons 4 '())))))
one-thru-four

This is now the list object to which the name one-thru-four is bound (or, a bit
more accurately, you should think of the name as being bound to the leftmost
pair object):

>>> one-thru-four
(1 2 3 4)
>>> (car one-thru-four)
1
>>> (car (cdr one-thru-four))
2
>>> (car (cdr (cdr one-thru-four)))
3

We could have defined this list equivalently via the list primitive:

>>> (define one-thru-four (list 1 2 3 4))
one-thru-four

4.13

3.11 A review of list-related primitives

CONS
Purpose: to create new pairs
>>> (cons 0 one-thru-four)
(0 1 2 3 4)

>>> (define new-list (cons 4 (cdr one-thru-four)))
new-list

>>> new-list
(4 2 3 4)

CAR
Purpose: returns the object pointed to by the first arrow in a pair
>>> (car one-thru-four)
1

>>> (car (cdr new-list))
2

CDR
Purpose: returns the object pointed to by the second arrow in a pair
>>> (cdr one-thru-four)
(2 3 4)

>>> (cdr (cdr (cdr one-thru-four)))
(4)

>>> (cdr (cdr (cdr (cdr one-thru-four))))
()

LIST
Purpose: to create new lists (shorthand for nested CONS calls)
>>> (list 1 2 3 4)
(1 2 3 4)

>>> (list 2 (list 3 4))
(2 (3 4))

APPEND
Purpose: to create new lists by concatenating the elements of two lists
together.
>>> (append new-list (list 5 6))
(4 2 3 4 5 6)

NULL?
Purpose: returns #T if its argument is the empty (null) list, or #F otherwise.
>>> (null? (cdr new-list))
#F

>>> (null? (cdr (list 2)))
#T

4.14

3.12 Some standard recursive list procedures

(define (list-length lis)
 (cond ((null? lis) 0)
 (else (+ 1 (list-length (cdr lis))))))

(define (sum-of-elts lis)
 (cond ((null? lis) 0)
 (else (+ (car lis)
 (sum-of-elts (cdr lis))))))

>>> (list-length one-thru-four)
4
>>> (sum-of-elts one-thru-four)
10

(define (list-average lis)
 (/ (sum-of-elts lis) (list-length lis)))

>>> (list-average one-thru-four)
2.5

As an exercise, you should definitely work through the problem of
defining a list-reverse procedure:

>>> (list-reverse one-thru-four)
(4 3 2 1)

4.15

3.13 Making "Turtle-Point" Objects

First, we make a "turtle-point constructor":

(define (make-turtle-point x y)
 (list x y))

Now, two "turtle-point selectors":

(define (turtle-point-x tpt)
 (car tpt))

(define (turtle-point-y tpt)
 (cadr tpt))

A procedure to move the turtle to a given turtle-point (this uses the built-in
setpos primitive):

(define (move-turtle-to tpt)
 (setpos (turtle-point-x tpt)
 (turtle-point-y tpt)))

Now, we could begin to build a library of procedures that could be used with
turtle points. For instance, here are some procedures that reflect turtle points
vertically, horizontally, and through the origin:

(define (reflect-x tpt)
 (make-turtle-point (* -1 (turtle-point-x tpt))
 (turtle-point-y tpt)))

(define (reflect-y tpt)
 (make-turtle-point (turtle-point-x tpt)
 (* -1 (turtle-point-y tpt))))

(define (reflect-in-origin tpt)
 (reflect-x (reflect-y tpt)))

(define (poly-from-startpt nsides sidelength startpt)
 (pu)
 (move-turtle-to startpt)
 (pd)
 (polygon nsides sidelength))

(define (make-four-polys nsides sidelength startpt)
 (poly-from-startpt nsides sidelength startpt)
 (poly-from-startpt nsides sidelength (reflect-x startpt))
 (poly-from-startpt nsides sidelength (reflect-y startpt))
 (poly-from-startpt nsides sidelength (reflect-in-origin startpt)))

4.16

(make-four-polys 8 10 (make-turtle-point 20 20))

Here, we make a procedure that takes as argument a list of turtle-points and
progressively moves the turtle to each of the points in turn:

(define (connect-turtle-dots list-of-dots)
 (cond ((null? list-of-dots) '())
 (else (move-turtle-to (car list-of-dots))
 (connect-turtle-dots (cdr list-of-dots)))))

It's probably handy to move the turtle to the first point in the list without
drawing a line:

(define (move-and-connect list-of-dots)
 (pu)
 (move-turtle-to (car list-of-dots))
 (pd)
 (connect-turtle-dots (cdr list-of-dots)))

(define list-of-turtle-pts
 (list (make-turtle-point 5 0)
 (make-turtle-point 5 10)
 (make-turtle-point -10 10)
 (make-turtle-point -10 -10)))

(move-and-connect list-of-turtle-pts)

4.17

The material covered in this portion of the lecture can be found in Chapter 8
of Programming in MacScheme.

3.14 Symbols: a New Kind of Object

Names can be bound to symbols (just as they can be bound to numbers, pairs,
booleans, and procedures):

>>> (define test-symbol 'hi)
test-symbol
>>> test-symbol
hi

Likewise, we can group symbols into lists (just as we can with numbers and
other types of objects):

>>> (define list-of-symbols
 (list 'apple 'banana 'orange))
list-of-symbols
>>> list-of-symbols
(apple banana orange)

Symbols are compared for equality with the eq? predicate procedure:

>>> (eq? 'a 'b)
#f
>>> (eq? 'a 'a)
#t

4.18

3.15 The Quote Special Form

Let's look back at that very first expression again:

>>> (define test-symbol 'hi)
test-symbol

Why do we need that quote mark just before the "hi" in this expression? First,
imagine what this would mean if the quote mark weren't there:

>>> (define test-symbol hi)

This is a perfectly good Scheme expression assuming that the name hi is bound
to some object. The way the interpreter would treat this expression is by first
evaluating the name hi and then binding the name test-symbol to whatever
object the name hi was bound to. In other words, if we were to evaluate the
following two expression in sequence

>>> (define hi 4)
hi
>>> (define test-symbol hi)
test-symbol

then the Scheme interpreter would happily evaluate the second expression,
binding the name test-symbol to the number object 4.

But of course this isn't what we want—instead, we want the name test-symbol
to be bound to the symbol hi, and not the result of evaluating that symbol. So
we need some way of telling the Scheme interpreter to treat a particular
symbolic expression not as a name to be evaluated but simply as "what it looks
like"—namely, a symbol. This is the purpose of the quote mark; it's rather like a
"don't-evaluate" marker for the interpreter:

>>> (define test-symbol 'hi)
test-symbol

The quote mark is actually shorthand for a special form named QUOTE, which
could be used as follows:

>>> (define test-symbol (quote hi))
test-symbol

This is entirely equivalent to the previous expression. In both cases we are
essentially telling the interpreter to treat the name hi as an un-evaluated
symbol.

As we will see in subsequent examples, quote can also be used as a don't-
evaluate marker before lists:

>>> (define test-list '(a b c))
test-list

>>> test-list
(a b c)

4.19

3.16 A Few Beginning Examples of Procedures Using Symbols

(define (filter-out-symbol sym lis)
 (cond ((null? lis) '())
 ((eq? (car lis) sym)
 (filter-out-symbol sym (cdr lis)))
 (else (cons (car lis)
 (filter-out-symbol sym (cdr lis))))))

>>> (filter-out-symbol 'banana list-of-symbols)
(apple orange)

(define (replace-symbol symbol1 with-symbol2 lis)
 (cond ((null? lis) '())
 ((eq? symbol1 (car lis))
 (cons with-symbol2
 (replace-symbol symbol1 with-symbol2 (cdr lis))))
 (else (cons (car lis)
 (replace-symbol symbol1 with-symbol2 (cdr lis))))))

>>> (replace-symbol 'rose 'horse '(a rose is a rose))
(a horse is a horse)

4.20

An idea which will come in handy for a sample program next week:

(define (choose-random-element lis)
 (list-ref lis (random (length lis))))

This procedure uses a few Scheme primitives:

length returns the length of a list (0 for the empty list); we wrote our own
version of this in the previous lecture.

>>> (length '(a b c))
3

random takes a positive integer argument and return an integer between 0 and
the integer - 1, chosen at random. (For instance, if we call random on the
argument 7, we will get an integer from 0 to 6, chosen at random).

>>> (random 7)
2

list-ref takes a list and an integer n and returns the nth element of the list,
starting the count from 0:

>>> (list-ref '(a b c) 0)
a

Putting these ideas together:

(define list-of-nouns
 '(cat dog horse birth death infinity))

>>> (choose-random-element list-of-nouns)
horse

4.21

3.17 Higher-Order Procedures: Nouning Verbs. (Or, "Data-ing
Procedures.")

The material covered in this lecture is elaborated upon in Chapters 11 and 12 of
Programming in MacScheme.

The rights of "first-class objects" in programming languages:

• This object can be the value of a name.
• This object can be passed as the argument to a procedure.
• This object can be returned as the result of a procedure call.
• This object can be grouped together into data structures (such as lists).

We're perfectly used to thinking of numbers as first-class objects:

Right 1: We can bind names to number objects.
(define pi 3.14159)

Rights 2 and 3: We can write procedures that take number objects as
arguments, and return number objects as their results.
>>> (double 5)
10

Right 4: We can group number objects into lists.
(define list-of-numbers (list 1 2))

In Scheme (and, with minor modifications, in Lisp), procedures are first-class
objects. Thus, we can (in accordance with right 2) create a procedure like the
following:

Right 2: We can write procedures that take procedure objects as arguments.
(define (apply-to-3 proc)
 (proc 3))

>>> (apply-to-3 1+)
4

Here, we have written a procedure apply-to-3 that takes a single argument
(which we intend to be a numeric procedure); when we call apply-to-3 on a
procedure argument, the result of the call to apply-to-3 will be the result of
applying the given procedure to the numeric argument 3.

4.22

3.18 A Classical Example of a Procedural Argument

(define (map-over-list proc lis)
 (cond ((null? lis) '())
 (else (cons (proc (car lis))
 (map-over-list proc (cdr lis)))))

>>> (map-over-list 1+ '(2 3 4))
(3 4 5)

In point of fact, this procedure already exists as a Scheme primitive, with the
name map:

>>> (map even? '(2 3 4))
(#t #f #t)

Another classical example:

(define (filter-by-predicate pred lis)
 (cond ((null? lis) '())
 ((pred (car lis))
 (cons (car lis) (filter-by-predicate pred (cdr lis))))
 (else (filter-by-predicate pred (cdr lis)))))

>>> (filter-by-predicate even? '(2 3 4 5))
(2 4)

>>> (map sqrt (filter-by-predicate positive? '(-5 6 7 -9)))
(2.449489742783178 2.6457513110645907)

4.23

3.19 Procedural Arguments in Turtle Graphics

First, let's make a simple turtle procedure. Here's a procedure that takes a
single argument (corresponding to a "side-length") and makes a kind of zig-
zag pattern scaled according to that argument:

(define (zig side)
 (fd side) (rt 144) (fd (/ side 2)) (lt 144) (fd side))

(zig 20)

Now, instead of our usual octagon procedure:

(define (octagon side)
 (repeat 8 (fd side) (rt 45)))

let's make a version of octagon that takes two arguments: a "turtle-mover-
procedure" argument and a side-length:

(define (octagon turtle-mover side)
 (repeat 8 (turtle-mover side) (rt 45)))

We can make a standard octagon using the procedure object to which fd is
bound as our turtle-mover:

(octagon fd 30)

Or we could use the new zig procedure as our turtle-mover:

4.24

(octagon zig 20)

(repeat 8 (octagon zig 15) (rt 45))

4.25

We could try the same idea—using a "mover" argument—with some of our other
turtle-graphics procedures.

(define (c-curve-with-mover mover side level)
 (cond ((= level 0) (mover side))
 (else (c-curve-with-mover mover side (- level 1))
 (rt 90)
 (c-curve-with-mover mover side (- level 1))
 (lt 90))))

(c-curve-with-mover zig 3 7)

4.26

3.20 Procedural Arguments: an Example from Math

We would like to express the idea of summing the value of a particular
function at a series of values. In off-putting math notation, this idea is
expressed using the character :

 3
 Σ x2 = 0 + 1 + 4 + 9 = 14
 0

What does that "sum" character mean, anyway? We could think about this as
something that requires three inputs—a function (like "x squared") a low
integer value, and a high integer value—and returns a number:

(define (math-sum function lo hi)
 (sum (map function
 (make-list-from-lo-to-hi lo hi))))

This math-sum procedure takes three arguments: a function and two integers.
It creates (using make-list-from-lo-to-hi) a list of the integers from the low
value to the high value; here's an example of how this procedure works when
called directly from the interpreter:

>>> (make-list-from-lo-to-hi 0 10)
(0 1 2 3 4 5 6 7 8 9 10)

The resulting list is then used as an argument to map, which maps the
particular function over the entire list; and then we use that result as the
argument to sum, a procedure which takes a list of numbers and sums them
(we actually saw such a procedure way back in Lecture 4). Here's an example
of our procedure in use:

>>> (math-sum double 0 5)
30

4.27

