Enhancing User Experience By Employing Collective Intelligence

April 16, 2008

Jason Zietz
Meet the Presenter

• Education
 – M.S. Computer Science and Application, Virginia Tech
 – Thesis: Activity-based Knowledge Management Tool Design for Educators

• Work Experience
 – Companies large and small
 – Currently User Experience consultant
Presentation Overview

• Background

• Examples of Collective Intelligence

• Implementing Collective Intelligence

• Applications in Current L3D Research
What is Collective Intelligence?

• **Collective intelligence** is a form of intelligence that emerges from the collaboration and competition of many individuals. (Wikipedia)

• Necessary Ingredients from Participants:
 – Appropriate mind-set
 – Willingness to share
 – Openness to the value of distributed intelligence for the common good
Why Do We Care About Collective Intelligence on the Web?

• Signal vs. Noise in the Long Tail
Why Do We Care About Collective Intelligence Now?
What Is User Experience?

- useful
- usable
- valuable
- findable
- accessible
- credible
Why Do We Care About UX?

![Microsoft Access dialog box with an error message]

![Microsoft Excel dialog box with a save confirmation message]
Why Do We Care About UX?
Why Is UX Important to Collective Intelligence (and vice versa)?

- Utility = Value / Effort

- “Reservoir of Goodwill” (Krug)
Presentation Overview

• Background

• Examples of Collective Intelligence

• Implementing Collective Intelligence

• Applications in Current L3D Research
Explicit vs. Implicit Activities

• Implicit
 – Insight achieved inherently with no extra work from the user

• Explicit
 – Insight requires specific activity from user
Common Computer-based Collective Intelligence Applications

• Social Networks
• Discussion Forums
• Mailing Lists
• Rating Systems
• Tags
Google

- Google Search
 - A giant recommendation system
 - Condor (Gloor)

- Google Trends
 - Asks: “What are people searching for?”
 - Takes Google Search a step further
Amazon

• System Activity
 – Home page recommendations
 – “People who bought this also purchased…”
 – “Buy this with this and get an additional 5% off”

• User Activity
 – Item Viewing
 – Purchasing
 – “I Own It” Control (Yes/No)
 – Rating System (1-5 Scale)
 – Was this review helpful? (Yes/No)
 – Tags
Netflix

- Recommendations and the Netflix Prize
 - $1,000,000 to entrant scoring 10% better than Netflix’s Cinematch recommendation system
 - Began as a crowdsourcing endeavor but became a source of collective intelligence
 - 12/2006 – Third place entrant posted complete algorithm online
 - Netflix has incorporated ideas from current leader into Cinematch
 - Just a Guy in a Garage
Enhancing User Experience by Employing Collective Intelligence

All time most popular tags

- africa
- amsterdam
- animals
- architecture
- art
- asia
- australia
- autumn
- baby
- band
- barcelo
- beach
- berlin
- birthday
- black
- blackandwhite
- blue
- boston
- bw
- california
- cameraphone
- camping
- canada
- canon
- car
- cat
- chicago
- china
- christmas
- church
- city
- clouds
- color
- concert
- cute
- day
- de
- dog
- england
- europe
- fall
- family
- festival
- film
- florida
- flower
- flowers
- food
- france
- friends
- fun
- garden
- geotagged
- germany
- girl
- graffiti
- green
- halloween
- hawaii
- hiking
- holiday
- home
- honeymoon
- house
- india
- ireland
- island
- italy
- japan
- july
- kids
- la
- lake
- landscape
- light
- live
- london
- macro
- march
- me
- mexico
- mountain
- mountains
- museum
- music
- nature
- new
- newyork
- newyorkcity
- newzealand
- night
- nikon
- nyc
- ocean
- paris
- park
- party
- people
- photo
- photos
- portrait
- red
- river
- rock
- rome
- san
- sanfrancisco
- scotland
- sea
- seattle
- show
- sky
- snow
- span
- spring
- street
- summer
- sun
- sunset
- sydney
- taiwan
- texas
- thailand
- tokyo
- toronto
- tour
- travel
- tree
- trees
- trip
- uk
- urban
- usa
- vacation
- vancouver
- washington
- water
- wedding
- white
- winter
- yellow
- york
- zoo
<table>
<thead>
<tr>
<th>Hot tags</th>
<th>Over the last week</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the last 24 hours</td>
<td></td>
</tr>
<tr>
<td>macro365, day105, hotgame,</td>
<td>londonmarathon2008, reconnect,</td>
</tr>
<tr>
<td>threesixtyfive, year2, sechsläuten,</td>
<td>notovideos, rsgmeetup20080412,</td>
</tr>
<tr>
<td>oneobject365daysproject, bewegung,</td>
<td>popsugar, thanewyear, sunnfun,</td>
</tr>
<tr>
<td>macromondays, iruña, publicenemies,</td>
<td>bfm0408, flickrvideo, novideos,</td>
</tr>
<tr>
<td>silvio, crafting365, project3662008,</td>
<td>novideoxonflickr, notovideo,</td>
</tr>
<tr>
<td>pcgame, sinistra, berlusconi, project3651,</td>
<td>notovideoxonflickr, novideoxonflickr,</td>
</tr>
<tr>
<td>monday, diabetes365</td>
<td>yurisnight, mw2008, victoriabaths,</td>
</tr>
<tr>
<td></td>
<td>seedsofcompassion, bobmas, operationreconnect</td>
</tr>
</tbody>
</table>
Other Examples

- Open Source Software
- **del.icio.us** – Social bookmarking via tagging
- **Wikipedia** – When crowdsourcing becomes collective intelligence
- **Digg Visualizations** – Was UX ignored?
Presentation Overview

• Background

• Examples of Collective Intelligence

• Implementing Collective Intelligence

• Applications in Current L3D Research
User Experience Tasks

- Requirements Gathering
- Task Flows/Wireframing/Prototyping
- Testing
- Evaluation
Programming Collective Intelligence

• Using Tags
 – Identification
 – Searching
 – Tag Clouds

• Not Using Tags
 – UX Consideration
Programming Collective Intelligence

• Making Recommendations
 – Similarity Coefficients
 • Euclidean Distance
 • Pearson Correlation
 • Tanimoto Similarity Score
 • Others (Jaccard, Manhattan, et cetera)
 – Cognitive Biases
Euclidean Distance

- Used in ratings systems
- Straight-line distance between two points
 \[\sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2} \]
- Can be used to measure difference in ratings by two people
- To get a similarity score between two people, calculate
 \[\frac{1}{1 + \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}} \]
 which yields a number between 0 and 1, where 1 means that the two people rated all of the items identically
Pearson Similarity Coefficient

- Measure of how well two sets of data fit on a straight line

\[
\frac{\sum XY - \frac{\sum X \sum Y}{N}}{\sqrt{\left(\sum X^2 - \frac{(\sum X)^2}{N}\right)\left(\sum Y^2 - \frac{(\sum Y)^2}{N}\right)}}
\]

- Correlation of 1 means ratings were identical
Tanimoto Similarity Score

\[1 - \frac{N_C}{N_A + N_B - N_C} \]

• Where
 – \(N_A \): Total items in A
 – \(N_B \): Total items in B
 – \(N_C \): Total items in both A and B

• Tanimoto Similarity Score is the ratio of the intersection set to the union set
Cognitive Biases

• Psychological Effects That Can Skew Data
 – Example: Anchoring in Netflix ratings
Clustering

• Prepare data using common set of numerical attributes used to compare items

• Choose clustering method
 – Hierarchical Clustering
 – K-Means Clustering
Hierarchical Clustering
K-Means Clustering
Clustering Blogs with Hierarchical Clustering
Visualizing Clusters - Dendograms
Clustering Blogs with Hierarchical Clustering
Clustering Words within Blogs with Hierarchical Clustering
Presentation Overview

- Background
- Examples of Collective Intelligence
- Implementing Collective Intelligence
- Applications in Current L3D Research
Applications to Meta-Design

• Meta-Design Explores Personally Meaningful Activities
 – Output of collective intelligence applications must be relevant to participants

• Meta-Design Requires Active Contributors
 – Collective intelligence applications allow for a wide range of activity, from implicit to very explicit contributions

• Meta-Design Raises Research Problems, Including Collaboration and Motivation
 – Collective intelligence applications can enable implicit collaboration
 – Collective intelligence applications can yield results otherwise not seen by participants, thus increasing utility and positively influencing motivation
Applications in ‘Transformative Models of Learning…’

• Why attempt to improve UX through Collective Intelligence in this research?
 – As the size of a VO scales upwards, the ability to easily identify connections among members and find relevant information decreases
 – Aiming to Create a VO of Active Contributors
 – Utility = Value / Effort
Applications in ‘Transformative Models of Learning…’

• Link Members of VO
 – Activity: Members of VO tag themselves
 • Tags – Skills they have, skills they lack (but have use for), research interests
 • Use Tanimoto score to match members with similar research interests
 • Use Tanimoto score to match members who lack a skill with members who have that skill
Applications in ‘Transformative Models of Learning…’

- Discover Relevant Areas of Study
 - Activity: Rate coursework taken
 - System stores previous coursework of all participants
 - Students can rate this coursework according to how much they liked the subject
 - System uses ratings to suggest other areas of study which may be interesting to student
Applications in ‘Transformative Models of Learning…’

• Explore Relevant Content
 – Activity: Cluster content within VO
 • Allow members of VO to explore relevant content in clusters using visualizations such as dendograms
Applications in “…Using and Evolving Software Products”

• Increase Utility of SAP Message Boards
 – Cluster related messages and allow users to explore the messages via an interactive dendogram
 – Make recommendations of threads users may be interested in reading
Suggested Readings

- Blog of Collective Intelligence (Pór)
- Programming Collective Intelligence (Segaran)
- Peter Morville on User Experience Design
- Elements of User Experience (Garrett)
- The Machine is Us/ing Us